CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

User:Roland Ludwig

From CAZypedia
Jump to navigation Jump to search
RolandLudwig2016.jpg

Roland Ludwig graduated from BOKU - University of Natural Resources and Life Sciences, Vienna with a masters degree in biotechnology and completed his doctoral studies under the supervision of Dietmar Haltrich in 2004. He worked as a senior & key researcher for the Austrian Centre of Industrial Biotechnology until 2009, when starting a postdoctoral internship at Lund University with bioelectrochemist Lo Gorton. Since 2011, he is permanently associated with BOKU and works on cofactor-dependent oxidoreductases such as laccases AA1 [1, 2], GMC-oxidoreductases AA3 [3, 4, 5, 6, 7], and lytic polysaccharide monooxygenases AA9 [8, 9, 10, 11]. The research focuses on the screening, production, and characterisation of oxidoreductases to understand their physiological roles and their engineering and application in biocatalysis [12] and biosensors [13, 14].



  1. Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Führer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO, Haltrich D, Ludwig R, and Kittl R. (2017). Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells. Sci Rep. 2017;7(1):13688. DOI:10.1038/s41598-017-13734-0 | PubMed ID:29057958 [Scheiblbrandner2018]
  2. Osipov E, Polyakov K, Kittl R, Shleev S, Dorovatovsky P, Tikhonova T, Hann S, Ludwig R, and Popov V. (2014). Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 11):2913-23. DOI:10.1107/S1399004714020380 | PubMed ID:25372682 [Osipov2014]
  3. Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, and Haltrich D. (2018). Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol. 2018;102(6):2477-2492. DOI:10.1007/s00253-018-8784-0 | PubMed ID:29411063 [Stutzl2018]
  4. Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, Kracher D, and Ludwig R. (2017). Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb Cell Fact. 2017;16(1):37. DOI:10.1186/s12934-017-0653-5 | PubMed ID:28245812 [Ma2017]
  5. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, and Divne C. (2015). Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun. 2015;6:7542. DOI:10.1038/ncomms8542 | PubMed ID:26151670 [Tan2015]
  6. Sygmund C, Klausberger M, Felice AK, and Ludwig R. (2011). Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Microbiology (Reading). 2011;157(Pt 11):3203-3212. DOI:10.1099/mic.0.051904-0 | PubMed ID:21903757 [Sygmund2011]
  7. Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, Kittl R, and Ludwig R. (2012). Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 2012;78(17):6161-71. DOI:10.1128/AEM.01503-12 | PubMed ID:22729546 [Sygmund2012]
  8. Kittl R, Kracher D, Burgstaller D, Haltrich D, and Ludwig R. (2012). Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels. 2012;5(1):79. DOI:10.1186/1754-6834-5-79 | PubMed ID:23102010 [Kittl2012]
  9. Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, and Ludwig R. (2016). Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352(6289):1098-101. DOI:10.1126/science.aaf3165 | PubMed ID:27127235 [Kracher2016]
  10. Breslmayr E, Hanžek M, Hanrahan A, Leitner C, Kittl R, Šantek B, Oostenbrink C, and Ludwig R. (2018). A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnol Biofuels. 2018;11:79. DOI:10.1186/s13068-018-1063-6 | PubMed ID:29588664 [Breslmayr2018]
  11. Kracher D, Andlar M, Furtmüller PG, and Ludwig R. (2018). Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. J Biol Chem. 2018;293(5):1676-1687. DOI:10.1074/jbc.RA117.000109 | PubMed ID:29259126 [Kracher2018]
  12. Sygmund C, Santner P, Krondorfer I, Peterbauer CK, Alcalde M, Nyanhongo GS, Guebitz GM, and Ludwig R. (2013). Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microb Cell Fact. 2013;12:38. DOI:10.1186/1475-2859-12-38 | PubMed ID:23617537 [Sygmund2013]
  13. Felice AK, Sygmund C, Harreither W, Kittl R, Gorton L, and Ludwig R. (2013). Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor. J Diabetes Sci Technol. 2013;7(3):669-77. DOI:10.1177/193229681300700312 | PubMed ID:23759400 [Felice2013]
  14. Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, and Gorton L. (2013). Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal Bioanal Chem. 2013;405(11):3637-58. DOI:10.1007/s00216-012-6627-x | PubMed ID:23329127 [Ludwig2013]

All Medline abstracts: PubMed