CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Roland Ludwig"
Harry Brumer (talk | contribs) m (added closing biblio tag and minor formatting edits) |
|||
(34 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | [[Image: | + | [[Image:RolandLudwig2016.jpg|180px|right]] |
− | Roland Ludwig graduated from BOKU - University of Natural Resources and Life Sciences, Vienna with a masters degree in biotechnology and completed his doctoral studies under the supervision of Dietmar Haltrich in 2004. He worked as a senior & key researcher for the Austrian Centre of Industrial Biotechnology until 2009, when starting a postdoctoral internship at Lund University with bioelectrochemist Lo Gorton. Since 2011, he is permanently associated with BOKU and works on cofactor-dependent oxidoreductases such as laccases [[AA1]]<cite> | + | Roland Ludwig graduated from BOKU - University of Natural Resources and Life Sciences, Vienna with a masters degree in biotechnology and completed his doctoral studies under the supervision of Dietmar Haltrich in 2004. He worked as a senior & key researcher for the Austrian Centre of Industrial Biotechnology until 2009, when starting a postdoctoral internship at Lund University with bioelectrochemist Lo Gorton. Since 2011, he is permanently associated with BOKU and works on cofactor-dependent oxidoreductases such as laccases [[AA1]] <cite>Scheiblbrandner2018 Osipov2014</cite>, GMC-oxidoreductases [[AA3]] <cite>Stutzl2018 Ma2017 Tan2015 Sygmund2011 Sygmund2012</cite>, and lytic polysaccharide monooxygenases [[AA9]] <cite>Kittl2012 Kracher2016 Breslmayr2018 Kracher2018</cite>. The research focuses on the screening, production, and characterisation of oxidoreductases to understand their physiological roles and their engineering and application in biocatalysis <cite>Sygmund2013</cite> and biosensors <cite>Felice2013 Ludwig2013</cite>. |
---- | ---- | ||
− | |||
− | |||
<biblio> | <biblio> | ||
− | # | + | #Scheiblbrandner2018 pmid=29057958 |
− | # | + | #Osipov2014 pmid=25372682 |
− | # | + | #Stutzl2018 pmid=29411063 |
− | # | + | #Ma2017 pmid=28245812 |
− | # | + | #Tan2015 pmid=26151670 |
− | # | + | #Sygmund2011 pmid=21903757 |
− | # | + | #Sygmund2012 pmid=22729546 |
− | # | + | #Kittl2012 pmid=23102010 |
− | # | + | #Kracher2016 pmid=27127235 |
− | # | + | #Breslmayr2018 pmid=29588664 |
− | # | + | #Kracher2018 pmid=29259126 |
− | # | + | #Sygmund2013 pmid=23617537 |
− | # | + | #Felice2013 pmid=23759400 |
+ | #Ludwig2013 pmid=23329127 | ||
+ | </biblio> | ||
<!-- Do not remove this Category tag --> | <!-- Do not remove this Category tag --> | ||
[[Category:Contributors|Ludwig,Roland]] | [[Category:Contributors|Ludwig,Roland]] |
Latest revision as of 21:30, 5 May 2018
Roland Ludwig graduated from BOKU - University of Natural Resources and Life Sciences, Vienna with a masters degree in biotechnology and completed his doctoral studies under the supervision of Dietmar Haltrich in 2004. He worked as a senior & key researcher for the Austrian Centre of Industrial Biotechnology until 2009, when starting a postdoctoral internship at Lund University with bioelectrochemist Lo Gorton. Since 2011, he is permanently associated with BOKU and works on cofactor-dependent oxidoreductases such as laccases AA1 [1, 2], GMC-oxidoreductases AA3 [3, 4, 5, 6, 7], and lytic polysaccharide monooxygenases AA9 [8, 9, 10, 11]. The research focuses on the screening, production, and characterisation of oxidoreductases to understand their physiological roles and their engineering and application in biocatalysis [12] and biosensors [13, 14].
- Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Führer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO, Haltrich D, Ludwig R, and Kittl R. (2017). Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells. Sci Rep. 2017;7(1):13688. DOI:10.1038/s41598-017-13734-0 |
- Osipov E, Polyakov K, Kittl R, Shleev S, Dorovatovsky P, Tikhonova T, Hann S, Ludwig R, and Popov V. (2014). Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 11):2913-23. DOI:10.1107/S1399004714020380 |
- Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, and Haltrich D. (2018). Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol. 2018;102(6):2477-2492. DOI:10.1007/s00253-018-8784-0 |
- Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, Kracher D, and Ludwig R. (2017). Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb Cell Fact. 2017;16(1):37. DOI:10.1186/s12934-017-0653-5 |
- Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, and Divne C. (2015). Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun. 2015;6:7542. DOI:10.1038/ncomms8542 |
- Sygmund C, Klausberger M, Felice AK, and Ludwig R. (2011). Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Microbiology (Reading). 2011;157(Pt 11):3203-3212. DOI:10.1099/mic.0.051904-0 |
- Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, Kittl R, and Ludwig R. (2012). Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 2012;78(17):6161-71. DOI:10.1128/AEM.01503-12 |
- Kittl R, Kracher D, Burgstaller D, Haltrich D, and Ludwig R. (2012). Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels. 2012;5(1):79. DOI:10.1186/1754-6834-5-79 |
- Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, and Ludwig R. (2016). Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352(6289):1098-101. DOI:10.1126/science.aaf3165 |
- Breslmayr E, Hanžek M, Hanrahan A, Leitner C, Kittl R, Šantek B, Oostenbrink C, and Ludwig R. (2018). A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnol Biofuels. 2018;11:79. DOI:10.1186/s13068-018-1063-6 |
- Kracher D, Andlar M, Furtmüller PG, and Ludwig R. (2018). Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. J Biol Chem. 2018;293(5):1676-1687. DOI:10.1074/jbc.RA117.000109 |
- Sygmund C, Santner P, Krondorfer I, Peterbauer CK, Alcalde M, Nyanhongo GS, Guebitz GM, and Ludwig R. (2013). Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microb Cell Fact. 2013;12:38. DOI:10.1186/1475-2859-12-38 |
- Felice AK, Sygmund C, Harreither W, Kittl R, Gorton L, and Ludwig R. (2013). Substrate specificity and interferences of a direct-electron-transfer-based glucose biosensor. J Diabetes Sci Technol. 2013;7(3):669-77. DOI:10.1177/193229681300700312 |
- Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, and Gorton L. (2013). Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal Bioanal Chem. 2013;405(11):3637-58. DOI:10.1007/s00216-012-6627-x |