CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Zachary Armstrong"
Harry Brumer (talk | contribs) (Created page with "200px|right '''This is an empty template to help you get started with composing your User page.''' You should begin by opening this page for ed...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | [[Image: | + | [[Image:Z_Armstrong.png|200px|right]] |
− | |||
− | + | Dr. Zachary Armstrong, a native of Iqaluit, Nunavut, obtained his B.Sc. — majoring in chemistry and biochemistry — from the [https://www.ubc.ca/ University of British Columbia]. His final year project, performed under the guidance of Professor [[User:Steve Withers|Steve Withers]], focused on the creation of a [[GH11]] thioglycoligase <cite>Armstrong2010</cite>. He completed his PhD at the University of British Columbia, co-supervised by Professors Steve Withers and [http://hallam.microbiology.ubc.ca/ Steven J. Hallam]. This work focused on the identification of glycoside hydrolases from metagenomic sources — including the beaver gut<cite>Armstrong2018</cite>,a mining bioreactor<cite>Armstrong2013</cite> and soils<cite>Armstrong2019mSys</cite>— and the engineering of glycosynthases from metagenomes and synthetic gene libraries<cite>Armstrong2019Acs</cite>. In 2018 he joined the group of [[User:Gideon Davies|Gideon Davies]] in the [https://www.york.ac.uk/chemistry/research/ysbl/ York Structural Biology Laboratories] at the [https://www.york.ac.uk/ University of York] as a postdoctoral research associate. His current work focuses on mechanism-based inhibitors and activity-based protein profiling of human carbohydrate processing enzymes. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | He has determined the crystal structure of : | ||
+ | * [[GH164]] ''Bacteroides salyersiae'' beta-mannosidase <cite>Armstrong2019JBC</cite> | ||
+ | |||
---- | ---- | ||
<biblio> | <biblio> | ||
− | # | + | #Armstrong2010 pmid=20112321 |
+ | #Armstrong2018 pmid=30013164 | ||
+ | #Armstrong2019mSys pmid=31164449 | ||
+ | #Armstrong2013 pmid=23906845 | ||
+ | #Armstrong2019Acs Armstrong Z, Liu F, Chen H-M, Hallam SJ, Withers SG. (2019) Systematic Screening of Synthetic Gene-Encoded Enzymes for Synthesis of Modified Glycosides. ''ACS Catal''. 53, 689-98. | [https://doi.org/10.1021/acscatal.8b05179 DOI: 10.1021/acscatal.8b05179] | ||
+ | #Armstrong2019JBC pmid=31871050 | ||
</biblio> | </biblio> | ||
− | |||
<!-- Do not remove this Category tag --> | <!-- Do not remove this Category tag --> | ||
[[Category:Contributors|Armstrong,Zachary]] | [[Category:Contributors|Armstrong,Zachary]] |
Latest revision as of 07:58, 2 April 2020
Dr. Zachary Armstrong, a native of Iqaluit, Nunavut, obtained his B.Sc. — majoring in chemistry and biochemistry — from the University of British Columbia. His final year project, performed under the guidance of Professor Steve Withers, focused on the creation of a GH11 thioglycoligase [1]. He completed his PhD at the University of British Columbia, co-supervised by Professors Steve Withers and Steven J. Hallam. This work focused on the identification of glycoside hydrolases from metagenomic sources — including the beaver gut[2],a mining bioreactor[3] and soils[4]— and the engineering of glycosynthases from metagenomes and synthetic gene libraries[5]. In 2018 he joined the group of Gideon Davies in the York Structural Biology Laboratories at the University of York as a postdoctoral research associate. His current work focuses on mechanism-based inhibitors and activity-based protein profiling of human carbohydrate processing enzymes.
He has determined the crystal structure of :
- Armstrong Z, Reitinger S, Kantner T, and Withers SG. (2010). Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase. Chembiochem. 2010;11(4):533-8. DOI:10.1002/cbic.200900711 |
- Armstrong Z, Mewis K, Liu F, Morgan-Lang C, Scofield M, Durno E, Chen HM, Mehr K, Withers SG, and Hallam SJ. (2018). Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome. ISME J. 2018;12(11):2757-2769. DOI:10.1038/s41396-018-0215-9 |
- Mewis K, Armstrong Z, Song YC, Baldwin SA, Withers SG, and Hallam SJ. (2013). Biomining active cellulases from a mining bioremediation system. J Biotechnol. 2013;167(4):462-71. DOI:10.1016/j.jbiotec.2013.07.015 |
- Armstrong Z, Liu F, Kheirandish S, Chen HM, Mewis K, Duo T, Morgan-Lang C, Hallam SJ, and Withers SG. (2019). High-Throughput Recovery and Characterization of Metagenome-Derived Glycoside Hydrolase-Containing Clones as a Resource for Biocatalyst Development. mSystems. 2019;4(4). DOI:10.1128/mSystems.00082-19 |
-
Armstrong Z, Liu F, Chen H-M, Hallam SJ, Withers SG. (2019) Systematic Screening of Synthetic Gene-Encoded Enzymes for Synthesis of Modified Glycosides. ACS Catal. 53, 689-98. | DOI: 10.1021/acscatal.8b05179
- Armstrong Z and Davies GJ. (2020). Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. J Biol Chem. 2020;295(13):4316-4326. DOI:10.1074/jbc.RA119.011591 |