CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Syn/anti lateral protonation"

From CAZypedia
Jump to navigation Jump to search
(GH164 is anti)
(Update clan-O GH52 and GH116)
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{CuratorApproved}}
 
{{CuratorApproved}}
* [[Author]]: ^^^Wim Nerinckx^^^
+
* [[Author]]: [[User:Wim Nerinckx|Wim Nerinckx]]
* [[Responsible Curator]]:  ^^^Spencer Williams^^^
+
* [[Responsible Curator]]:  [[User:Spencer Williams|Spencer Williams]]
  
 
----
 
----
Line 97: Line 97:
 
| alpha-{{Smallcaps|d}}-glucose-6-phosphate
 
| alpha-{{Smallcaps|d}}-glucose-6-phosphate
 
| '''Asp172'''
 
| '''Asp172'''
| Not applicable
+
| not applicable
 
| <cite>Rajan2004</cite>
 
| <cite>Rajan2004</cite>
 
|-
 
|-
 
 
| [[GH5]]
 
| [[GH5]]
 
| A
 
| A
Line 476: Line 475:
 
| sialyllactose
 
| sialyllactose
 
| '''Asp59'''
 
| '''Asp59'''
| Tyr342
+
| Tyr342 (with Glu230)
 
| <cite>Amaya2004</cite>
 
| <cite>Amaya2004</cite>
 
|-
 
|-
Line 490: Line 489:
 
| α-{{Smallcaps|d}}-Neup5Ac-(2,3)-β-{{Smallcaps|d}}-Galp-(1,4)-β-{{Smallcaps|d}}-GlcpNAc
 
| α-{{Smallcaps|d}}-Neup5Ac-(2,3)-β-{{Smallcaps|d}}-Galp-(1,4)-β-{{Smallcaps|d}}-GlcpNAc
 
| '''Asp151'''
 
| '''Asp151'''
| Tyr406
+
| Tyr406 (with Glu277)
 
| <cite>Zhu2012</cite>
 
| <cite>Zhu2012</cite>
 
|-
 
|-
Line 708: Line 707:
 
| beta-{{Smallcaps|d}}
 
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| '''''anti'''''
+
| '' predicted perpendicular by clan, see at GH116''
 
| [{{PDBlink}}4c1p 4c1p]
 
| [{{PDBlink}}4c1p 4c1p]
 
| β-xylosidase
 
| β-xylosidase
Line 774: Line 773:
 
|-
 
|-
 
| [[GH57]]
 
| [[GH57]]
| none
+
| T
 
| (β/α)<sub>7</sub>
 
| (β/α)<sub>7</sub>
 
| alpha-{{Smallcaps|d}}
 
| alpha-{{Smallcaps|d}}
Line 1,021: Line 1,020:
 
| Simian virus 5
 
| Simian virus 5
 
| α-2,3-sialyllactose
 
| α-2,3-sialyllactose
| '''Glu247''' relay
+
| '''Asp187''' on flexible loop
| Tyr523
+
| Tyr523 (with Glu390)
 
| <cite>Yuan2005</cite>
 
| <cite>Yuan2005</cite>
 
|-
 
|-
Line 1,180: Line 1,179:
 
|-
 
|-
 
| [[GH100]]  
 
| [[GH100]]  
| none
+
| G
 
| (α/α)<sub>6</sub> core
 
| (α/α)<sub>6</sub> core
 
| beta-{{Smallcaps|d}}
 
| beta-{{Smallcaps|d}}
Line 1,192: Line 1,191:
 
| Glu414
 
| Glu414
 
| <cite>Xie2016</cite>
 
| <cite>Xie2016</cite>
 +
|-
 +
| [[GH101]]
 +
| none
 +
| (β/α)<sub>8</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}5a56 5a56]
 +
| endo-α-N-acetylgalactosaminidase
 +
| ''Streptococcus pneumoniae'' TIGR4
 +
| β-{{Smallcaps|d}}-Galp-(1-3)-α-{{Smallcaps|d}}-GalpNAc-(1)-methyl
 +
| '''Glu796''' +water
 +
| Asp764
 +
| <cite>Gregg2015</cite>
 
|-
 
|-
 
| [[GH102]]
 
| [[GH102]]
Line 1,248: Line 1,261:
 
|  
 
|  
 
|
 
|
 +
|-
 +
| [[GH110]]
 +
| none
 +
| parallel β-helix
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}7jwf 7jwf]
 +
| α-1,3-galactosidase
 +
| ''Pseudoalteromonas distincta''
 +
| Gal-α1,3-Gal
 +
| '''Asp344'''
 +
| Asp321 Asp345
 +
| <cite>McGuire2020</cite>
 
|-
 
|-
 
| [[GH113]]
 
| [[GH113]]
Line 1,268: Line 1,295:
 
| beta-{{Smallcaps|d}}
 
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''perpendicular''''' (anomaly)
| ''see at GH52''
+
| [{{PDBlink}}8i5u 8i5u]
|  
+
| β-glucosidase
|  
+
| ''Thermoanaerobacterium xylanolyticum'' LX-11
|  
+
| laminaribiose
|  
+
| '''Asp593'''
|  
+
| Glu441
|  
+
| <cite>Pengthaisong2023</cite>
 
|-
 
|-
 
| [[GH117]]
 
| [[GH117]]
| none
+
| F
 
| 5-fold β-propeller
 
| 5-fold β-propeller
 
| alpha-{{Smallcaps|l}}
 
| alpha-{{Smallcaps|l}}
Line 1,290: Line 1,317:
 
| Asp90
 
| Asp90
 
| <cite>Hehemann_2_2012</cite>
 
| <cite>Hehemann_2_2012</cite>
 +
|-
 +
| [[GH119]]
 +
| T
 +
| (β/α)<sub>7</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at GH57''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 
|-
 
|-
 
| [[GH120]]
 
| [[GH120]]
Line 1,352: Line 1,393:
 
| beta-{{Smallcaps|d}}
 
| beta-{{Smallcaps|d}}
 
| retaining
 
| retaining
| ''predicted anti by clan''
+
| '''''anti'''''
| ''see e.g. at GH1''
+
| [{{PDBlink}}6ufl 6ufl]
|  
+
| β-1,3-glucanase
|  
+
| ''Amycolatopsis mediterranei''
|  
+
| laminarihexaose
|  
+
| '''Glu102'''
|  
+
| Glu199
|  
+
| <cite>Santos2020</cite>
 
|-
 
|-
 
| [[GH130]]
 
| [[GH130]]
Line 1,416: Line 1,457:
 
| Glu159
 
| Glu159
 
| <cite>Ndeh2017</cite>
 
| <cite>Ndeh2017</cite>
 
 
|-
 
|-
 
|  [[GH138]]
 
|  [[GH138]]
Line 1,432: Line 1,472:
 
| <cite>Labourel2019</cite>
 
| <cite>Labourel2019</cite>
 
|-
 
|-
| [[GH146]]
+
| [[GH140]]
| P
+
| A
| (α/α)<sub>6</sub> and β-sandwich
+
| (β/α)<sub>8</sub>
| beta-{{Smallcaps|l}}
+
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH144]]
 +
| S
 +
| (α/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}8xul 8xul]
 +
| beta-1,2-glucanase
 +
| ''Xanthomonas campestris''
 +
| beta-1,2-glucoheptasaccharide
 +
| '''Glu239'''
 +
| unknown
 +
| <cite>Nakajima2024</cite>
 +
|-
 +
| [[GH146]]
 +
| P
 +
| (α/α)<sub>6</sub> and β-sandwich
 +
| beta-{{Smallcaps|l}}
 
| retaining
 
| retaining
 
| '''''anti'''''
 
| '''''anti'''''
 
| [{{PDBlink}}5opj 5opj]
 
| [{{PDBlink}}5opj 5opj]
| β-{{Smallcaps|l}}-arabinofuranosidase BT_0349
+
| β-{{Smallcaps|l}}-arabinofuranosidase
 
| ''Bacteroides thetaiotaomicron''
 
| ''Bacteroides thetaiotaomicron''
 
| {{Smallcaps|l}}-arabinose
 
| {{Smallcaps|l}}-arabinose
Line 1,501: Line 1,569:
 
| Asp14
 
| Asp14
 
| <cite>Bule2019</cite>
 
| <cite>Bule2019</cite>
 
 
|-
 
|-
 
| [[GH157]]
 
| [[GH157]]
Line 1,517: Line 1,584:
 
|  
 
|  
 
|-
 
|-
 
 
| [[GH158]]
 
| [[GH158]]
 
| A
 
| A
Line 1,547: Line 1,613:
 
|-
 
|-
 
| [[GH162]]
 
| [[GH162]]
| none
+
| S
 
| (α/α)<sub>6</sub>
 
| (α/α)<sub>6</sub>
 
| beta-{{Smallcaps|d}}
 
| beta-{{Smallcaps|d}}
Line 1,573: Line 1,639:
 
| Glu297
 
| Glu297
 
| <cite>Armstrong2020</cite>
 
| <cite>Armstrong2020</cite>
 
 
|-
 
|-
| [http://www.cazy.org/GH0.html n.c.*]
+
| [[GH167]]
| none
+
| A
| parallel β-helix
+
| (β/α)<sub>8</sub>
| alpha-{{Smallcaps|d}}
+
| beta-{{Smallcaps|d}}
| inverting
+
| retaining
| '''''anti'''''
+
| ''predicted anti by clan''
| [{{PDBlink}}2vjj 2vjj]
+
| ''see at e.g. GH1''
| endo-α-N-acetylglucosaminidase
+
|
| Bacteriophage HK620
+
|
| O18A1 O-antigen hexasaccharide
+
|
| '''Asp339'''
+
|
| Glu372
+
|
| <cite>Barbirz2008</cite>
+
|-
|}
+
| [[GH169]]
<nowiki>*</nowiki> n.c.: Found among the collection of [http://www.cazy.org/GH0.html non-classified GH sequences in the CAZy Database].
+
| A
 
+
| (β/α)<sub>8</sub>
== References ==
+
| beta-{{Smallcaps|d}}
 
+
| retaining
<biblio>
+
| ''predicted anti by clan''
# HeightmanVasella1999 Heightman TD and Vasella AT. ''Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases.'' Angew Chem Int Ed. 1999 38(6):750-770. [http://www3.interscience.wiley.com/journal/55000581/abstract Article online].
+
| ''see at e.g. GH1''
# Nerinckx2005 pmid=15642336
+
|
# Wu2012 pmid=23137336
+
|
# Perez1978 Pérez S and Marchessault RH. ''The exo-anomeric effect: experimental evidence from crystal structures.'' Carbohydr res. 1978 65:114-120. [http://dx.doi.org/10.1016/S0008-6215(00)84218-4 DOI:10.1016/S0008-6215(00)84218-4]
+
|
# Cramer1997 Cramer CJ, Truhlar DG, and French AD. ''Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution.'' Carbohydr res. 1997 298:1-14. [http://dx.doi.org/10.1016/S0008-6215(96)00297-2 DOI:10.1016/S0008-6215(96)00297-2]
+
|
# Johnson2009 pmid=19733839
+
|
# Alonso2016 pmid=26889578
+
|
# Gloster2006 pmid=17002288
+
|-
# van_Bueren2009 pmid=18976664
+
| [[GH172]]
# Hrmova2001 pmid=11709165
+
| none
# Rajan2004 pmid=15341727
+
| β-jelly roll
# Varrot2003 pmid=12595701
+
| alpha-{{Smallcaps|d}}
# Zhou1999 pmid=10508787
+
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}7v1w 7v1w]
 +
| difructose-anhydride synthase
 +
| ''Bifidobacterium dentum''
 +
| beta-{{Smallcaps|d}}-arabinofuranose
 +
| '''Glu270'''
 +
| Glu291
 +
| <cite>Kashima2021</cite>
 +
|-
 +
| [[GH173]]
 +
| A
 +
| (β/α)<sub>8</sub>
 +
| beta-{{Smallcaps|d}}
 +
| retaining
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH1''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH178]]
 +
| L
 +
| (α/α)<sub>6</sub>
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| ''predicted anti by clan''
 +
| ''see at e.g. GH15''
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|-
 +
| [[GH181]]
 +
| E
 +
| 6-fold β-propeller
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}8axi 8axi]
 +
| exo-α-sialidase
 +
| ''Akkermansia muciniphila''
 +
| 2-deoxy-2,3-dehydro-''N''-acetyl-neuraminic acid + T-antigen disaccharide
 +
| '''Asp345'''
 +
| Glu218
 +
| <cite>Shuoker2023</cite>
 +
|-
 +
| [[GH183]]
 +
| none
 +
| 5-bladed β-propeller
 +
| alpha-{{Smallcaps|d}}
 +
| retaining
 +
| '''''anti'''''
 +
| [{{PDBlink}}8ic1 8ic1]
 +
| endo-α-1,5-{{Smallcaps|d}}-arabinofuranosidase
 +
| ''Microbacterium arabinogalactanolyticum'' JCM 9171
 +
| α-{{Smallcaps|d}}-Araf-(1,5)-α-{{Smallcaps|d}}-Araf-(1,5)-α-{{Smallcaps|d}}-Araf-(1,5)-α-{{Smallcaps|d}}-Araf
 +
| '''Asp51'''
 +
| Asp33
 +
| <cite>Shimokawa2023</cite>
 +
|-
 +
| [[GH186]]
 +
| none
 +
| β-sandwich
 +
| beta-{{Smallcaps|d}}
 +
| inverting
 +
| '''''syn'''''
 +
| [{{PDBlink}}8ip1 8ip1]
 +
| β-1,2-glucanase
 +
| ''Escherechia coli''
 +
| β-1,2-glucan
 +
| '''Asp388'''
 +
| Asp300 + 3 waters
 +
| <cite>Motouchi2023</cite>
 +
|-
 +
| [http://www.cazy.org/GH0.html n.c.*]
 +
| none
 +
| parallel β-helix
 +
| alpha-{{Smallcaps|d}}
 +
| inverting
 +
| '''''anti'''''
 +
| [{{PDBlink}}2vjj 2vjj]
 +
| endo-α-N-acetylglucosaminidase
 +
| Bacteriophage HK620
 +
| O18A1 O-antigen hexasaccharide
 +
| '''Asp339'''
 +
| Glu372
 +
| <cite>Barbirz2008</cite>
 +
|}
 +
<nowiki>*</nowiki> n.c.: Found among the collection of [http://www.cazy.org/GH0.html non-classified GH sequences in the CAZy Database].
 +
 
 +
== References ==
 +
 
 +
<biblio>
 +
# HeightmanVasella1999 Heightman TD and Vasella AT. ''Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases.'' Angew Chem Int Ed. 1999 38(6):750-770. [http://www3.interscience.wiley.com/journal/55000581/abstract Article online].
 +
# Nerinckx2005 pmid=15642336
 +
# Wu2012 pmid=23137336
 +
# Perez1978 Pérez S and Marchessault RH. ''The exo-anomeric effect: experimental evidence from crystal structures.'' Carbohydr res. 1978 65:114-120. [http://dx.doi.org/10.1016/S0008-6215(00)84218-4 DOI:10.1016/S0008-6215(00)84218-4]
 +
# Cramer1997 Cramer CJ, Truhlar DG, and French AD. ''Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution.'' Carbohydr res. 1997 298:1-14. [http://dx.doi.org/10.1016/S0008-6215(96)00297-2 DOI:10.1016/S0008-6215(96)00297-2]
 +
# Johnson2009 pmid=19733839
 +
# Alonso2016 pmid=26889578
 +
# Gloster2006 pmid=17002288
 +
# van_Bueren2009 pmid=18976664
 +
# Hrmova2001 pmid=11709165
 +
# Rajan2004 pmid=15341727
 +
# Varrot2003 pmid=12595701
 +
# Zhou1999 pmid=10508787
 
# Sulzenbacher1999 pmid=10200171
 
# Sulzenbacher1999 pmid=10200171
 
# Urbanikova2011 pmid=21501386
 
# Urbanikova2011 pmid=21501386
Line 1,682: Line 1,857:
 
# Ndeh2017 pmid=28329766
 
# Ndeh2017 pmid=28329766
 
# Labourel2019 pmid=30877196
 
# Labourel2019 pmid=30877196
 +
# Nakajima2024 Nakajima M. et al. ''Extensive distribution of β-1,2-glucanases: finding of new glycoside hydrolase families of β-1,2-glucanases.'' BioRxiv preprint 2024. https://doi.org/10.1101/2024.02.06.578578
 
# Luis2018 pmid=29255254
 
# Luis2018 pmid=29255254
 
# Bule2019 pmid=31645552
 
# Bule2019 pmid=31645552
Line 1,689: Line 1,865:
 
# Thompson2012 pmid=22219371
 
# Thompson2012 pmid=22219371
 
# Xie2016 pmid=27777307
 
# Xie2016 pmid=27777307
 +
# Gregg2015 pmid=26304114
 
# Williams2014 pmid=24339341
 
# Williams2014 pmid=24339341
 +
 +
# Pengthaisong2023 pmid=37180965
 +
 
# Hehemann_2_2012 pmid=22393053
 
# Hehemann_2_2012 pmid=22393053
 +
 
# Huang2012 pmid=22992047
 
# Huang2012 pmid=22992047
 
# Noach2016 pmid=27038508
 
# Noach2016 pmid=27038508
Line 1,699: Line 1,880:
 
# Tanaka2019 pmid=30926603
 
# Tanaka2019 pmid=30926603
 
# Armstrong2020 pmid=31871050
 
# Armstrong2020 pmid=31871050
 +
# Santos2020 pmid=32451508
 +
# Kashima2021 pmid=34688653
 +
# McGuire2020 pmid=33127644
 +
# Shuoker2023 pmid=37005422
 +
# Shimokawa2023 pmid=37726269
 +
# Motouchi2023 pmid=37735577
  
 
</biblio>
 
</biblio>
 
 
[[Category:Definitions and explanations]]
 
[[Category:Definitions and explanations]]

Revision as of 01:14, 8 April 2025

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Overview

This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].

Background

The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.

Closer inspection of crystal structures of –1/+1 subsite-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary [2, 3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5, 6, 7]. Anti protonation occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that anti protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).

Syn protonating glycoside hydrolases apparently make use of a different approach [2, 3]. In many –1/+1 subsite-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the syn half-space, allowing it to be protonated by the syn-positioned proton donor (Figure 1 right).

Figure 1. Newman projections, with the glycosidic oxygen as proximal atom and the anomeric carbon as distal atom, showing anti (centre) versus syn (right) semi-lateral protonation in beta-equatorial (top) and alpha-axial (bottom) glycoside hydrolases. The indicated φ is the dihedral angle for O5'-C1'-O4-C4.

Table of syn/anti protonation examples

This table contains only one example per GH family of a ligand-complexed protein structure where the syn or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.

Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.

Table

This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the View tab at the very top of the page.

Family Clan Structure fold Anomeric specificity Mechanism Syn/anti protonator Example PDB ID Enzyme Organism Ligand General acid Nucleophile or General base Reference
GH1 A (β/α)8 beta-d retaining anti 2cer β-glycosidase S Sulfolobus solfataricus P2 phenethyl glucoimidazole Glu206 Glu387 [8]
GH2 A (β/α)8 beta-d / alpha-l retaining anti 2vzu exo-β-glucosaminidase Amicolatopsis orientalis PNP-β-d-glucosamine Glu469 Glu541 [9]
GH3 none (β/α)8 beta-d / alpha-l retaining anti 1iex exo-1,3-1,4-glucanase Hordeum vulgare thiocellobiose Glu491 Asp285 [10]
GH4 none Rossmann + α6/β3 + β3/α4 beta-d retaining anti 1u8x 6-P-α-glucosidase Bacillus subtilis alpha-d-glucose-6-phosphate Asp172 not applicable [11]
GH5 A (β/α)8 beta-d retaining anti 1h2j endo-β-1,4-glucanase Bacillus agaradhaerens 2',4'-DNP-2-F-cellobioside Glu129 Glu228 [12]
GH6 none (β/α)8 beta-d inverting syn 1qjw cellobiohydrolase 2 Hypocrea jecorina (Glc)2-S-(Glc)2 Asp221 debated [13]
GH7 B β-jelly roll beta-d retaining syn 1ovw endo-1,4-glucanase Fusarium oxysporum thio-(Glc)5 Glu202 Glu197 [14]
GH8 M (α/α)6 beta-d inverting anti 1kwf endo-1,4-glucanase Clostridium thermocellum cellopentaose Glu95 Asp278 [15]
GH9 none (α/α)6 beta-d inverting syn 1rq5 cellobiohydrolase Clostridium thermocellum cellotetraose Glu795 Asp383 [16]
GH10 A (β/α)8 beta-d retaining anti 2d24 β-1,4-xylanase Streptomyces olivaceoviridis E-86 xylopentaose Glu128 Glu236 [17]
GH11 C β-jelly roll beta-d retaining syn 4hk8 endo-β-1,4-xylanase Hypocrea jecorina xylohexaose Glu177 Glu86 [18]
GH12 C β-jelly roll beta-d retaining syn 1w2u endoglucanase Humicola grisea thiocellotetraose Glu205 Glu120 [19]
GH13 H (β/α)8 alpha-d retaining anti 1cxk β-cyclodextrin glucanotransferase Bacillus circulans maltononaose Glu257 Asp229 [20]
GH14 none (β/α)8 alpha-d inverting syn 1itc β-amylase Bacillus cereus maltopentaose Glu172 Glu367 [21]
GH15 L (α/α)6 alpha-d inverting anti 1dog glucoamylase Aspergillus awamori 1-deoxynojirimycin Glu179 Glu400 [22]
GH16 B β-jelly roll beta-d retaining syn 1urx β-agarase A Zobellia galactanivorans oligoagarose Glu152 Glu147 [23]
GH17 A (β/α)8 beta-d retaining anti 4gzj endo-β-1,3-glucanase Solanum tuberosum laminaratriose + laminarabiose Glu118 Glu259 [24]
GH18 K (β/α)8 beta-d retaining anti 1ffr chitinase A Serratia marcescens (NAG)6 Glu315 internal [25]
GH19 none lysozyme type beta-d inverting syn 3wh1 chitinase Bryum coronatum (GlcNAc)4 Glu61 Glu70 [26]
GH20 K (β/α)8 beta-d retaining anti 1c7s chitobiase Serratia marcescens chitobiose Glu540 internal [27]
GH22 none lysozyme type beta-d retaining syn 1h6m lysozyme C Gallus gallus Chit-2-F-chitosyl Glu35 Asp52 [28]
GH23 none lysozyme type beta-d inverting syn 1lsp lysozyme G Cygnus atratus Bulgecin A Glu73 internal [29]
GH24 I α + β beta-d inverting syn 148l lysozyme E Bacteriophage T4 chitobiosyl Glu11 Glu26 [30]
GH26 A (β/α)8 beta-d retaining anti 2vx6 exo-β-mannanase Cellvibrio japonicus Ueda107 Gal1Man4 Glu221 Glu338 [31]
GH27 D (β/α)8 alpha-d / beta-l retaining anti 3lrm α-galactosidase Saccharomyces cerevisiae raffinose Asp209 Asp141 [32]
GH28 N β-helix alpha-d (and α-l-rham) inverting anti 2uvf exo-polygalacturonosidase Yersinia enterocolitica ATCC9610D digalacturonic acid Asp402 Asp381 Asp403 [33]
GH29 R (β/α)8 alpha-l retaining syn 3uet α-1,3/4-fucosidase Bifidobacterium longum subsp. infantis lacto-N-fucopentaose II Glu217 Asp172 [34]
GH30 A (β/α)8 beta-d retaining anti 2y24 glucurono-xylanase Dickea chrysanthemi D1 glucuronoxylan tetrasaccharide Glu163 Glu253 [35]
GH31 D (β/α)8 alpha-d retaining anti 2qmj maltase-glucoamylase Homo sapiens acarbose Asp542 Asp443 [36]
GH32 J 5-fold β-propeller beta-d retaining anti 2add fructan β-(2,1)-fructosidase Cichorium intybus sucrose Glu201 Asp22 [37]
GH33 E 6-fold β-propeller alpha-d retaining anti 1s0i transsialidase Trypanosoma cruzi sialyllactose Asp59 Tyr342 (with Glu230) [38]
GH34 E 6-fold β-propeller alpha-d retaining anti 4gzw N2 neuraminidase Influenza A Tanzania/205/2010 H3N2 α-d-Neup5Ac-(2,3)-β-d-Galp-(1,4)-β-d-GlcpNAc Asp151 Tyr406 (with Glu277) [39]
GH35 A (β/α)8 beta-d retaining anti 3ogv β-galactosidase Hypocrea jecorina 2-phenylethyl 1-thio-β-d-galactopyranoside Glu200 Glu298 [40]
GH36 D (β/α)8 alpha-d retaining anti 4fnu β-galactosidase Geobacillus stearothermophilus stachyose Asp584 Asp478 [41]
GH37 G (α/α)6 alpha-d inverting anti 2jf4 trehalase Escherichia coli validoxylamine Asp312 Glu496 [42]
GH38 none (β/α)7 alpha-d retaining anti 3czn Golgi α-mannosidase II Drosophila melanogaster GlcNAcMan(5)GlcNAc(2) Asp341 Asp204 [43]
GH39 A (β/α)8 beta-d / alpha-l retaining anti 2bfg β-xylosidase Geobacillus stearothermophilus 2,5-dinitrophenyl-β-d-xyloside Glu160 Glu278 [44]
GH42 A (β/α)8 beta-d / alpha-l retaining anti 4ucf β-galactosidase Bifidobacterium bifidum d-galactose Glu161 Glu320 [45]
GH43 F 5-fold β-propeller beta-d / alpha-l inverting anti 3akh exo-1,5-α-l-arabinofuranosidase Streptomyces avermitilis α-1,5-arabinofuranotriose Glu196 Asp220 [46]
GH44 none (β/α)8 beta-d retaining anti 2eqd endoglucanase Clostridium thermocellum cellooctaose Glu186 Glu359 [47]
GH45 none 6-stranded β-barrel beta-d inverting syn 4eng endo-1,4-glucanase Humicola insolens cellohexaose Asp121 Asp10 [48]
GH46 I lysozyme type beta-d inverting syn 4olt chitosanase Microbacterium sp. OU01 hexa-glucosamine Glu25 Asp43 [49]
GH47 none (α/α)7 alpha-d inverting anti 1x9d α-mannosidase I Homo sapiens Me-2-S-(α-Man)-2-thio-α-Man Asp463 Glu599 [50], [51]
GH48 M (α/α)6 beta-d inverting predicted anti by clan see at GH8
GH49 N β-helix alpha-d inverting predicted anti by clan see at GH28
GH50 A (β/α)8 beta-d retaining anti 4bq5 exo-β-agarase Saccharophagus degradans neoagarotetraose Glu535 Glu695 [52]
GH51 A (β/α)8 beta-d / alpha-l retaining anti 1qw9 α-l-arabinofuranosidase Geobacillus stearothermophilus PNP-l-arabinofuranoside Glu175 Glu294 [53]
GH52 O (α/α)6 beta-d retaining predicted perpendicular by clan, see at GH116 4c1p β-xylosidase Geobacillus thermoglucosidasius xylobiose Asp517 Glu537 [54]
GH53 A (β/α)8 beta-d retaining anti 2ccr β-1,4-galactanase Bacillus licheniformis galactotriose Glu165 Glu263 [55]
GH54 none β-sandwich beta-d / alpha-l retaining anti 1wd4 α-l-arabinofuranosidase B Aspergillus kawachii l-arabinofuranose Asp297 Glu221 [56]
GH55 none β-helix beta-d inverting syn 4tz5 exo-β-1,3-glucanase Streptomyces sp. SirexAA-E laminarihexaose Glu502 unknown [57]
GH56 none (β/α)7 beta-d retaining anti 1fcv hyaluronidase Apis mellifera (hyaluron.)4 Glu113 internal [58]
GH57 T (β/α)7 alpha-d retaining anti 1k1y glucanotransferase Thermococcus litoralis acarbose Asp214 Glu123 [59]
GH59 A (β/α)8 beta-d retaining anti 4ccc β-galactocerebrosidase Mus musculus PNP-β-d-galactoside Glu182 Glu258 [60]
GH62 F 5-fold β-propeller alpha-l inverting anti 3wn0 α-l-arabinofuranosidase Streptomyces coelicolor β-l-Arabinofuranose Glu361 Asp202 [61]
GH63 G (α/α)6 alpha-d inverting anti 5ca3 α-glucosidase Escherichia coli glucose and lactose Asp501 Glu727 [62]
GH65 L (α/α)6 alpha-d (and α-l-rham) inverting anti 4ktr 2-O-α-glucosylglycerol phosphorylase Bacillus selenitireducens isofagomine Glu475 phosphate [63]
GH66 none (β/α)8 alpha-d retaining anti 5axh dextranase Thermoanaerobacter pseudethanolicus isomaltohexaose Glu374 Asp312 [64]
GH67 none (β/α)8 alpha-d inverting syn 1l8n α-glucuronidase Geobacillus stearothermophilus 4-O-methyl-d-glucuronic acid and xylotriose Glu286 Asp364 Glu392 [65]
GH68 J 5-fold β-propeller beta-d retaining anti 1pt2 levansucrase Bacillus subtilis sucrose Glu342 Asp86 [66]
GH70 H (β/α)8 alpha-d retaining anti 3aic glucansucrase Streptococcus mutans α-acarbose Glu515 Asp477 [67]
GH72 A (β/α)8 beta-d retaining anti 2w62 β-1,3-glucanotransferase Saccharomyces cerevisiae S288C laminaripentaose Glu176 Glu275 [68]
GH74 none 7-fold β-propeller beta-d inverting syn 2ebs cellobiohydrolase (OXG-RCBH) Geotrichum sp. m128 xyloglucan heptasaccharide Asp465 Asp35 [69]
GH76 none (α/α)6 alpha-d retaining anti 5agd endo-α-1,6-mannanase Bacillus circulans α-1,6-mannopentaose Asp125 Asp124 [70]
GH77 H (β/α)8 alpha-d retaining anti 2oww 4-α-glucanotransferase Thermus thermofilus acarbose + 4-deoxy-α-d-glucose Glu340 Asp293 [71]
GH78 H (α/α)6 alpha-l inverting anti 3w5n α-l-rhamnosidase Streptomyces avermitilis l-rhamnose Glu636 Glu895 [72]
GH79 A (β/α)8 beta-d retaining anti 5e9c heparanase Homo sapiens heparin tetrasaccharide Glu225 Glu343 [73]
GH80 I α + β beta-d inverting predicted syn by clan see at GH24
GH81 none β-sandwich beta-d inverting syn 5t4g endo-β-1,3-glucanase Bacillus halodurans C-125 laminarin Asp466 Glu542 [74]
GH83 E 6-fold β-propeller alpha-d retaining anti 1z4x hemagglutinin-neuraminidase Simian virus 5 α-2,3-sialyllactose Asp187 on flexible loop Tyr523 (with Glu390) [75]
GH84 none (β/α)8 beta-d retaining anti 2chn β-N-acetyl-glucosaminidase Bacteroides thetaiotaomicron VPI-5482 NAG-thiazoline Glu242 internal [76]
GH85 K (β/α)8 beta-d retaining anti 2w92 endo-β-N-acetyl-glucosaminidase D Streptococcus pneumoniae TIGR4 NAG-thiazoline Glu337 internal [77]
GH86 A (β/α)8 beta-d retaining anti 4aw7 β-porphyranase Bacteroides plebeius porphyran fragment Glu152 Glu279 [78]
GH89 none (β/α)8 alpha-d retaining anti 2vcb α-N-acetyl-glucosaminidase Clostridium perfringens PUGNAc Glu483 Glu601 [79]
GH92 none (α/α)6 and β-sandwich alpha-d inverting anti 2ww1 α-1,2-mannosidase Bacteroides thetaiotaomicron VPI-5482 thiomannobioside Glu533 Asp644 Asp642 [80]
GH93 E 6-fold β-propeller alpha-l retaining anti 3a72 exo-arabinanase Penicillium chrysogenum arabinobiose Glu246 Glu174 [81]
GH94 Q (α/α)6 beta-d inverting syn 4zli cellobionic acid phosphorylase Saccharophagus degradans 3-O-β-d-glucopyranosyl-α-d-glucopyranuronic acid Asp472 phosphate [82]
GH95 none (α/α)6 alpha-l inverting anti 2ead α-1,2-l-fucosidase Bifidobacterium bifidum Fuc-α-1,2-Gal Glu566 Asn423 Asp766 [83]
GH97 none (β/α)8 alpha-d retaining + inverting anti 2zq0 α-glucosidase Bacteroides thetaiotaomicron VPI-5482 acarbose Glu532 Glu508 [84]
GH98 none (β/α)8 and β-sandwich beta-d inverting anti 2wmg endo-β-1,4-galactosidase Streptococcus pneumoniae A-LewisY pentasaccharide Glu158 Asp251 Glu301 [85]
GH99 none (β/α)8 alpha-d retaining anti 4ad4 endo-α-mannosidase Bacteroides xylanisolvens glucose-1,3-isofagomine and α-1,2- mannobiose Glu336 debated [86]
GH100 G (α/α)6 core beta-d inverting anti 5gop invertase Anabaena (Nostoc) sp. pcc7120 sucrose Asp188 Glu414 [87]
GH101 none (β/α)8 alpha-d retaining anti 5a56 endo-α-N-acetylgalactosaminidase Streptococcus pneumoniae TIGR4 β-d-Galp-(1-3)-α-d-GalpNAc-(1)-methyl Glu796 +water Asp764 [88]
GH102 none double-ψ β-barrel beta-d retaining syn 2pi8 lytic transglycosylase A Escherichia coli chitohexaose Asp308 none [89]
GH103 none lysozyme type beta-d retaining syn 1d0k lytic transglycosylase SLT35 Escherichia coli murodipeptides Glu162 internal [90]
GH106 none (β/α)8 alpha-l inverting anti 5mwk α-l-rhamnosidase BT_0986 Bacteroides thetaiotaomicron pectin heptasaccharide Glu461 Glu593 or Glu561 [91]
GH107 R (β/α)8 alpha-l retaining predicted syn by clan see at GH29
GH110 none parallel β-helix alpha-d inverting anti 7jwf α-1,3-galactosidase Pseudoalteromonas distincta Gal-α1,3-Gal Asp344 Asp321 Asp345 [92]
GH113 A (β/α)8 beta-d retaining anti 4cd8 β-mannanase Alicyclobacillus acidocaldarius mannobioimidazole Glu151 Glu231 [93]
GH116 O (α/α)6 and β-sandwich beta-d retaining perpendicular (anomaly) 8i5u β-glucosidase Thermoanaerobacterium xylanolyticum LX-11 laminaribiose Asp593 Glu441 [94]
GH117 F 5-fold β-propeller alpha-l inverting anti 4ak7 α-1,3-3,6-anhydro-l-galactosidase Bacteroides plebeius neoagarobiose His302 (relay from Asp320) Asp90 [95]
GH119 T (β/α)7 alpha-d retaining predicted anti by clan see at GH57
GH120 none parallel β-helix and β-sandwich beta-d retaining anti 3vsv β-xylosidase XylC Thermoanaerobacterium saccharolyticum JW/SL-YS485 d-xylose Glu405 Asp382 [96]
GH123 none (β/α)8 and β-sandwich beta-d retaining anti 5fr0 exo-β-N-acetyl-galactosaminidase Clostridium perfringens N-difluoroacetyl-d-galactosamine Glu345 internal [97]
GH125 L (α/α)6 alpha-d inverting anti 5m7y exo-α-1,6-mannosidase Clostridium perfringens 1,6-α-mannotriose Asp220 Glu393 [98]
GH127 P (α/α)6 and β-sandwich beta-l retaining anti 3wrg β-l-arabinofuranosidase Bifidobacterium longum l-arabinose Glu322 Cys417 [99]
GH128 A (β/α)8 beta-d retaining anti 6ufl β-1,3-glucanase Amycolatopsis mediterranei laminarihexaose Glu102 Glu199 [100]
GH130 none 5-fold β-propeller beta-d inverting anti 5b0s β-1,2-mannobiose phosphorylase Listeria innocua β-1,2-mannotriose Asp141 relay phosphate [101]
GH134 none β + α beta-d inverting syn 5jug β-mannanase Streptomyces sp. mannopentaose Glu45 Asp57 [102]
GH136 none β-helix beta-d retaining syn 5gqf lacto-N-biosidase Bifidobacterium longum lacto-N-biose Asp411 Asp418 [103]
GH137 none 5-fold β-propeller beta-l unknown anti 5mui β-l-arabinofuranosidase BT_0996 Bacteroides thetaiotaomicron pectin oligosaccharide Glu240 Glu159 [91]
GH138 none (β/α)8 alpha-d retaining syn 6hzg α-1,2-d-galacturonidase Bacteroides paurosaccharolyticus alpha-d-galactopyranuronic Glu294 Glu361 [104]
GH140 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH144 S (α/α)8 beta-d inverting syn 8xul beta-1,2-glucanase Xanthomonas campestris beta-1,2-glucoheptasaccharide Glu239 unknown [105]
GH146 P (α/α)6 and β-sandwich beta-l retaining anti 5opj β-l-arabinofuranosidase Bacteroides thetaiotaomicron l-arabinose Glu320 Cys416 [106]
GH147 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH148 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH149 Q (α/α)6 beta-d inverting predicted syn by clan see at GH94
GH156 none (β/α)8 alpha-d inverting syn 6s0e exo-α-sialidase uncultured bacterium pG7 N-acetyl-2,3-dehydro-2-deoxyneuraminic acid His134 (relay from Asp132) Asp14 [107]
GH157 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH158 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH161 Q (α/α)6 beta-d retaining predicted syn by clan see at GH94
GH162 S (α/α)6 beta-d inverting syn 6imw endo-β-1,2-glucanase Talaromyces funiculosus beta-1,2-glucan Glu262 via C3-OH of glc at subs. +2 Asp446 [108]
GH164 A (β/α)8 beta-d retaining anti 6t75 β-mannosidase Bacteroides salyersiae 2-deoxy-2-F-mannosyl Glu160 Glu297 [109]
GH167 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH169 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH172 none β-jelly roll alpha-d retaining anti 7v1w difructose-anhydride synthase Bifidobacterium dentum beta-d-arabinofuranose Glu270 Glu291 [110]
GH173 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH178 L (α/α)6 alpha-d inverting predicted anti by clan see at e.g. GH15
GH181 E 6-fold β-propeller alpha-d inverting anti 8axi exo-α-sialidase Akkermansia muciniphila 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid + T-antigen disaccharide Asp345 Glu218 [111]
GH183 none 5-bladed β-propeller alpha-d retaining anti 8ic1 endo-α-1,5-d-arabinofuranosidase Microbacterium arabinogalactanolyticum JCM 9171 α-d-Araf-(1,5)-α-d-Araf-(1,5)-α-d-Araf-(1,5)-α-d-Araf Asp51 Asp33 [112]
GH186 none β-sandwich beta-d inverting syn 8ip1 β-1,2-glucanase Escherechia coli β-1,2-glucan Asp388 Asp300 + 3 waters [113]
n.c.* none parallel β-helix alpha-d inverting anti 2vjj endo-α-N-acetylglucosaminidase Bacteriophage HK620 O18A1 O-antigen hexasaccharide Asp339 Glu372 [114]

* n.c.: Found among the collection of non-classified GH sequences in the CAZy Database.

References

Error fetching PMID 15642336:
Error fetching PMID 23137336:
Error fetching PMID 19733839:
Error fetching PMID 26889578:
Error fetching PMID 17002288:
Error fetching PMID 18976664:
Error fetching PMID 11709165:
Error fetching PMID 12595701:
Error fetching PMID 10508787:
Error fetching PMID 10200171:
Error fetching PMID 21501386:
Error fetching PMID 11884144:
Error fetching PMID 14756552:
Error fetching PMID 19279191:
Error fetching PMID 24419374:
Error fetching PMID 15364577:
Error fetching PMID 10331869:
Error fetching PMID 12741813:
Error fetching PMID 15062085:
Error fetching PMID 23275163:
Error fetching PMID 11560481:
Error fetching PMID 10884356:
Error fetching PMID 15299731:
Error fetching PMID 8259514:
Error fetching PMID 18799462:
Error fetching PMID 20592022:
Error fetching PMID 17397864:
Error fetching PMID 22451675:
Error fetching PMID 17335500:
Error fetching PMID 23015718:
Error fetching PMID 21130883:
Error fetching PMID 23012371:
Error fetching PMID 16212978:
Error fetching PMID 27685756:
Error fetching PMID 15299721:
Error fetching PMID 24766439:
Error fetching PMID 23921382:
Error fetching PMID 15893670:
Error fetching PMID 14517232:
Error fetching PMID 24816105:
Error fetching PMID 19089956:
Error fetching PMID 25752603:
Error fetching PMID 11080624:
Error fetching PMID 12618437:
Error fetching PMID 24297913:
Error fetching PMID 24482228:
Error fetching PMID 27688023:
Error fetching PMID 24828502:
Error fetching PMID 26494689:
Error fetching PMID 14573597:
Error fetching PMID 14517548:
Error fetching PMID 21354427:
Error fetching PMID 19097997:
Error fetching PMID 17498741:
Error fetching PMID 25772148:
Error fetching PMID 17420245:
Error fetching PMID 26575439:
Error fetching PMID 28781080:
Error fetching PMID 21543843:
Error fetching PMID 26041776:
Error fetching PMID 17459873:
Error fetching PMID 18981178:
Error fetching PMID 19608744:
Error fetching PMID 17502382:
Error fetching PMID 10684641:
Error fetching PMID 30877196:
Error fetching PMID 29255254:
Error fetching PMID 31645552:
Error fetching PMID 28392148:
Error fetching PMID 24582745:
Error fetching PMID 22219371:
Error fetching PMID 27777307:
Error fetching PMID 26304114:
Error fetching PMID 24339341:
Error fetching PMID 37180965:
Error fetching PMID 22393053:
Error fetching PMID 22992047:
Error fetching PMID 27038508:
Error fetching PMID 28026180:
Error fetching PMID 26632508:
Error fetching PMID 18547389:
Error fetching PMID 30926603:
Error fetching PMID 31871050:
Error fetching PMID 32451508:
Error fetching PMID 34688653:
Error fetching PMID 33127644:
Error fetching PMID 37005422:
Error fetching PMID 37726269:
  1. Heightman TD and Vasella AT. Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angew Chem Int Ed. 1999 38(6):750-770. Article online.

    [HeightmanVasella1999]
  2. Error fetching PMID 15642336: [Nerinckx2005]
  3. Error fetching PMID 23137336: [Wu2012]
  4. Pérez S and Marchessault RH. The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res. 1978 65:114-120. DOI:10.1016/S0008-6215(00)84218-4

    [Perez1978]
  5. Cramer CJ, Truhlar DG, and French AD. Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res. 1997 298:1-14. DOI:10.1016/S0008-6215(96)00297-2

    [Cramer1997]
  6. Error fetching PMID 19733839: [Johnson2009]
  7. Error fetching PMID 26889578: [Alonso2016]
  8. Error fetching PMID 17002288: [Gloster2006]
  9. Error fetching PMID 18976664: [van_Bueren2009]
  10. Error fetching PMID 11709165: [Hrmova2001]
  11. Rajan SS, Yang X, Collart F, Yip VL, Withers SG, Varrot A, Thompson J, Davies GJ, and Anderson WF. (2004). Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure. 2004;12(9):1619-29. DOI:10.1016/j.str.2004.06.020 | PubMed ID:15341727 [Rajan2004]
  12. Error fetching PMID 12595701: [Varrot2003]
  13. Error fetching PMID 10508787: [Zhou1999]
  14. Error fetching PMID 10200171: [Sulzenbacher1999]
  15. Error fetching PMID 11884144: [Guerin2002]
  16. Error fetching PMID 14756552: [Schubot2004]
  17. Error fetching PMID 19279191: [Suzuki2009]
  18. Error fetching PMID 24419374: [Wan2014]
  19. Error fetching PMID 15364577: [Sandgren2004]
  20. Error fetching PMID 10331869: [Uitdehaag1999]
  21. Error fetching PMID 12741813: [Miyake2003]
  22. Harris EM, Aleshin AE, Firsov LM, and Honzatko RB. (1993). Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry. 1993;32(6):1618-26. DOI:10.1021/bi00057a028 | PubMed ID:8431441 [Harris1993]
  23. Error fetching PMID 15062085: [Allouch2004]
  24. Error fetching PMID 23275163: [Wojtkowiak2013]
  25. Error fetching PMID 11560481: [Papanikolau2001]
  26. Error fetching PMID 24582745: [Ohnuma2014]
  27. Error fetching PMID 10884356: [Prag2000]
  28. Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 | PubMed ID:11518970 [Vocadlo2001]
  29. Error fetching PMID 15299731: [Karlsen1996]
  30. Error fetching PMID 8259514: [Baldwin1993]
  31. Error fetching PMID 18799462: [Cartmell2008]
  32. Error fetching PMID 20592022: [Fernandez-Leiro2010]
  33. Error fetching PMID 17397864: [Abbott2007]
  34. Error fetching PMID 22451675: [Sakurama2012]
  35. Error fetching PMID 21501386: [Urbanikova2011]
  36. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, and Rose DR. (2008). Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008;375(3):782-92. DOI:10.1016/j.jmb.2007.10.069 | PubMed ID:18036614 [Sim2008]
  37. Error fetching PMID 17335500: [Verhaest2007]
  38. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 | PubMed ID:15130470 [Amaya2004]
  39. Error fetching PMID 23015718: [Zhu2012]
  40. Error fetching PMID 21130883: [Maksimainen2011]
  41. Error fetching PMID 23012371: [Merceron2012]
  42. Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, García A, Chiara JL, and Davies GJ. (2007). Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem Int Ed Engl. 2007;46(22):4115-9. DOI:10.1002/anie.200604825 | PubMed ID:17455176 [Gibson2007]
  43. Shah N, Kuntz DA, and Rose DR. (2008). Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci U S A. 2008;105(28):9570-5. DOI:10.1073/pnas.0802206105 | PubMed ID:18599462 [Shah2008]
  44. Error fetching PMID 16212978: [Czjzek2005]
  45. Error fetching PMID 27685756: [Godoy2016]
  46. Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, and Kaneko S. (2010). Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J Biol Chem. 2010;285(44):34134-43. DOI:10.1074/jbc.M110.164251 | PubMed ID:20739278 [Fujimoto2010]
  47. Kitago Y, Karita S, Watanabe N, Kamiya M, Aizawa T, Sakka K, and Tanaka I. (2007). Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem. 2007;282(49):35703-11. DOI:10.1074/jbc.M706835200 | PubMed ID:17905739 [Kitago2007]
  48. Error fetching PMID 15299721: [Davies1996]
  49. Error fetching PMID 24766439: [Lyu2014]
  50. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, and Moremen KW. (2005). Mechanism of class 1 (glycosylhydrolase family 47) {alpha}-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem. 2005;280(16):16197-207. DOI:10.1074/jbc.M500119200 | PubMed ID:15713668 [Karaveg2005]
  51. Cantú D, Nerinckx W, and Reilly PJ. (2008). Theory and computation show that Asp463 is the catalytic proton donor in human endoplasmic reticulum alpha-(1-->2)-mannosidase I. Carbohydr Res. 2008;343(13):2235-42. DOI:10.1016/j.carres.2008.05.026 | PubMed ID:18619586 [Nerinckx2008]
  52. Error fetching PMID 23921382: [Pluvinage2013]
  53. Error fetching PMID 14517232: [Hoevel2003]
  54. Error fetching PMID 24816105: [Espina2014]
  55. Error fetching PMID 19089956: [Le_Nours2009]
  56. Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, and Fushinobu S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem. 2004;279(43):44907-14. DOI:10.1074/jbc.M405390200 | PubMed ID:15292273 [Miyanaga2004]
  57. Error fetching PMID 25752603: [Bianchetti2015]
  58. Error fetching PMID 11080624: [Markovic-Housley2000]
  59. Error fetching PMID 12618437: [Imamura2003]
  60. Error fetching PMID 24297913: [Hill2013]
  61. Error fetching PMID 24482228: [Maehara2014]
  62. Error fetching PMID 27688023: [Miyazaki2016]
  63. Error fetching PMID 24828502: [Touhara2014]
  64. Error fetching PMID 26494689: [Suzuki2016]
  65. Error fetching PMID 14573597: [Golan2004]
  66. Error fetching PMID 14517548: [Meng2003]
  67. Error fetching PMID 21354427: [Ito2011]
  68. Error fetching PMID 19097997: [Hurtado-Gerrero2009]
  69. Error fetching PMID 17498741: [Yaoi2007]
  70. Error fetching PMID 25772148: [Thompson2015]
  71. Error fetching PMID 17420245: [Barends2007]
  72. Fujimoto Z, Jackson A, Michikawa M, Maehara T, Momma M, Henrissat B, Gilbert HJ, and Kaneko S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem. 2013;288(17):12376-85. DOI:10.1074/jbc.M113.460097 | PubMed ID:23486481 [Fujimoto2013]
  73. Error fetching PMID 26575439: [Wu2015]
  74. Error fetching PMID 28781080: [Pluvinage2017]
  75. Error fetching PMID 15893670: [Yuan2005]
  76. Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, and Davies GJ. (2006). Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol. 2006;13(4):365-71. DOI:10.1038/nsmb1079 | PubMed ID:16565725 [Dennis2006]
  77. Abbott DW, Macauley MS, Vocadlo DJ, and Boraston AB. (2009). Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem. 2009;284(17):11676-89. DOI:10.1074/jbc.M809663200 | PubMed ID:19181667 [Abbott2009]
  78. Hehemann JH, Kelly AG, Pudlo NA, Martens EC, and Boraston AB. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A. 2012;109(48):19786-91. DOI:10.1073/pnas.1211002109 | PubMed ID:23150581 [Hehemann_1_2012]
  79. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, and Boraston AB. (2008). Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A. 2008;105(18):6560-5. DOI:10.1073/pnas.0711491105 | PubMed ID:18443291 [Ficko-Blean2008]
  80. Zhu Y, Suits MD, Thompson AJ, Chavan S, Dinev Z, Dumon C, Smith N, Moremen KW, Xiang Y, Siriwardena A, Williams SJ, Gilbert HJ, and Davies GJ. (2010). Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol. 2010;6(2):125-32. DOI:10.1038/nchembio.278 | PubMed ID:20081828 [Zhu2009]
  81. Error fetching PMID 21543843: [Sogabe2011]
  82. Error fetching PMID 26041776: [Nam2015]
  83. Error fetching PMID 17459873: [Nagae2007]
  84. Error fetching PMID 18981178: [Kitamura2008]
  85. Error fetching PMID 19608744: [Higgins2009]
  86. Error fetching PMID 22219371: [Thompson2012]
  87. Error fetching PMID 27777307: [Xie2016]
  88. Error fetching PMID 26304114: [Gregg2015]
  89. Error fetching PMID 17502382: [van_Straaten2007]
  90. Error fetching PMID 10684641: [van_Asselt2000]
  91. Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, and Gilbert HJ. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544(7648):65-70. DOI:10.1038/nature21725 | PubMed ID:28329766 [Ndeh2017]
  92. Error fetching PMID 33127644: [McGuire2020]
  93. Error fetching PMID 24339341: [Williams2014]
  94. Error fetching PMID 37180965: [Pengthaisong2023]
  95. Error fetching PMID 22393053: [Hehemann_2_2012]
  96. Error fetching PMID 22992047: [Huang2012]
  97. Error fetching PMID 27038508: [Noach2016]
  98. Error fetching PMID 28026180: [Alonso-Gil2016]
  99. Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1). J Bioprocess Biotech. 2014 4:171 DOI:10.4172/2155-9821.1000171

    [Huang2014]
  100. Error fetching PMID 32451508: [Santos2020]
  101. Error fetching PMID 26632508: [Tsuda2015]
  102. Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Cent Sci. 2016 Nov DOI:10.1021/acscentsci.6b00232

    [Jin2016]
  103. Error fetching PMID 28392148: [Yamada2017]
  104. Error fetching PMID 30877196: [Labourel2019]
  105. Nakajima M. et al. Extensive distribution of β-1,2-glucanases: finding of new glycoside hydrolase families of β-1,2-glucanases. BioRxiv preprint 2024. https://doi.org/10.1101/2024.02.06.578578

    [Nakajima2024]
  106. Error fetching PMID 29255254: [Luis2018]
  107. Error fetching PMID 31645552: [Bule2019]
  108. Error fetching PMID 30926603: [Tanaka2019]
  109. Error fetching PMID 31871050: [Armstrong2020]
  110. Error fetching PMID 34688653: [Kashima2021]
  111. Error fetching PMID 37005422: [Shuoker2023]
  112. Error fetching PMID 37726269: [Shimokawa2023]
  113. Motouchi S, Kobayashi K, Nakai H, and Nakajima M. (2023). Identification of enzymatic functions of osmo-regulated periplasmic glucan biosynthesis proteins from Escherichia coli reveals a novel glycoside hydrolase family. Commun Biol. 2023;6(1):961. DOI:10.1038/s42003-023-05336-6 | PubMed ID:37735577 [Motouchi2023]
  114. Error fetching PMID 18547389: [Barbirz2008]

All Medline abstracts: PubMed