CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 151"

From CAZypedia
Jump to navigation Jump to search
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- RESPONSIBLE CURATORS: Please replace the {{UnderConstruction}} tag below with {{CuratorApproved}} when the page is ready for wider public consumption -->
+
{{CuratorApproved}}
{{UnderConstruction}}
+
* [[Author]]: [[User:Casper Wilkens|Casper Wilkens]], [[User:David Teze|David Teze]], and [[User:Birgitte Zeuner|Birgitte Zeuner]]
* [[Author]]: ^^^Casper Wilkens^^^, ^^^David Teze^^^, and ^^^Birgitte Zeuner^^^
+
* [[Responsible Curator]]:  [[User:Birgitte Zeuner|Birgitte Zeuner]]
* [[Responsible Curator]]:  ^^^Birgitte Zeuner^^^
 
 
----
 
----
  
Line 18: Line 17:
 
|-
 
|-
 
|'''Active site residues'''
 
|'''Active site residues'''
|Not known
+
|Known
 
|-
 
|-
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
 
|{{Hl2}} colspan="2" align="center" |'''CAZy DB link'''
Line 27: Line 26:
 
<!-- This is the end of the table -->
 
<!-- This is the end of the table -->
  
 +
== Substrate specificities ==
 +
Members of [[GH151]] are bacterial enzymes presenting α-L-fucosidase activity ([{{EClink}}3.2.1.51 EC 3.2.1.51]) <cite>Sela2012 Benesova2015 Lezyk2016</cite>. Activity has been observed on 4-nitrophenyl-α-L-fucopyranoside (''p''NP-α-L-Fuc) <cite>Benesova2015 Lezyk2016</cite> and on 2-chloro-4-nitrophenyl-α-L-fucopyranoside (CNP-α-L-Fuc) <cite>Sela2012</cite>. GH151 α-L-fucosidases are reportedly unable to catalyze hydrolysis of human milk oligosaccharide structures 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL) <cite>Sela2012 Lezyk2016</cite>, but slight activity has been observed on the blood group H antigen disaccharide Fuc-α-1,2-Gal <cite>Sela2012</cite>. No activity was observed on fucosylated xyloglucan <cite>Lezyk2016</cite>.
  
== Substrate specificities ==
+
The first characterized members of GH151 were perceived as members of [[GH29]] due to their α-L-fucosidase activity <cite>Sela2012 Lezyk2016</cite>. However, phylogenetic analysis and sequence alignment revealed poor homology to GH29 <cite>Sela2012 Lezyk2016</cite>. Based on the low sequence similarity to GH29, it was suggested that a new GH family be created <cite>Benesova2015</cite>. Sequence homology to [[GH42]] β-galactosidase trimerization domains has been reported <cite>Sela2012 Lezyk2016</cite>. Consequently, one GH151 α-L-fucosidase was tested for activity on ''p''NP-β-D-Gal, ''p''NP-β-D-Glc, and ''p''NP-β-D-Lac, but none was observed <cite>Lezyk2016</cite>.
Members of GH151 have α-L-fucosidase activity (EC 3.2.1.51) <cite>Sela2012 Benesova2015 Lezyk2016</cite>. Activity has been observed on 4-nitrophenyl-α-L-fucopyranoside (pNP-α-L-Fuc) <cite>Benesova2015 Lezyk2016</cite> and on 2-chloro-4-nitrophenyl-α-L-fucopyranoside (CNP-α-L-Fuc) <cite>Sela2012</cite>. GH151 α-L-fucosidases are reportedly unable to catalyze hydrolysis of human milk oligosaccharide structures 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL) <cite>Sela2012 Lezyk2016</cite>, but slight activity has been observed on the blood group H antigen disaccharide Fuc-α-1,2-Gal <cite>Sela2012</cite>. No activity was observed on fucosylated xyloglucan <cite>Lezyk2016</cite>.
 
  
 
== Kinetics and Mechanism ==
 
== Kinetics and Mechanism ==
  
The mechanism of GH151 has not been determined, but based on reports that two members of GH151 can catalyze transglycosylation using pNP-α-L-Fuc as donor substrate <cite>Benesova2015 Lezyk2016</cite>, a retaining mechanism has been inferred.
+
The catalytic mechanism of GH151 has not been determined, but based on reports that two members of GH151 can catalyze transglycosylation using ''p''NP-α-L-Fuc or CNP-α-L-Fuc as donor substrate <cite>Benesova2015 Lezyk2016 Teze2021</cite>, a retaining mechanism has been inferred.
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
The catalytic residues of GH151 are unknown.
+
In the α-L-fucosidase isoenzyme 2 from ''Paenibacillus thiaminolyticus'', Glu235 was assigned as catalytic acid/base and Asp154 as catalytic nucleophile following a combination of mutational, structural, docking, and QM/MM studies <cite>Kovalova2022</cite>. Initially, both Asp9 and Asp154 were investigated as putative nucleophiles. However, docking studies combined with the fact that the variant D9N performed well in transglycosylation <cite>Teze2021</cite> indicated that the role of Asp9 is in substrate binding <cite>Kovalova2022</cite>.
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
No three-dimensional structures have been solved for GH151.
+
The first solved structure in GH151 was that of α-L-fucosidase isoenzyme 2 from ''Paenibacillus thiaminolyticus''. It revealed a tetrameric structure with active site complementation by His503 <cite>Kovalova2022</cite>.
  
 
== Family Firsts ==
 
== Family Firsts ==
;First stereochemistry determination: Content is to be added here.
+
;First stereochemistry determination: Not yet identified.
;First catalytic nucleophile identification: Content is to be added here.
+
;First catalytic nucleophile identification: Asp154 in α-L-fucosidase isoenzyme 2 from ''Paenibacillus thiaminolyticus'' <cite>Kovalova2022</cite>.
;First general acid/base residue identification: Content is to be added here.
+
;First general acid/base residue identification: Glu235 in α-L-fucosidase isoenzyme 2 from ''Paenibacillus thiaminolyticus'' <cite>Kovalova2022</cite>.
;First 3-D structure: Content is to be added here.
+
;First 3-D structure: The 3-D structure of α-L-fucosidase isoenzyme 2 from ''Paenibacillus thiaminolyticus'' <cite>Kovalova2022</cite>.
  
 
== References ==
 
== References ==
 
<biblio>
 
<biblio>
  
#Lezyk2016 pmid=26800369
 
 
#Sela2012 pmid=22138995
 
#Sela2012 pmid=22138995
 
#Benesova2015 pmid=26013545
 
#Benesova2015 pmid=26013545
 +
#Lezyk2016 pmid=26800369
  
 
+
#Teze2021 pmid=33914359
 +
#Kovalova2022 pmid=35113503
 
</biblio>
 
</biblio>
 
 
  
 
[[Category:Glycoside Hydrolase Families|GH151]]
 
[[Category:Glycoside Hydrolase Families|GH151]]

Latest revision as of 03:19, 20 May 2022

Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Glycoside Hydrolase Family GH151
Clan None
Mechanism Retaining (inferred)
Active site residues Known
CAZy DB link
https://www.cazy.org/GH151.html

Substrate specificities

Members of GH151 are bacterial enzymes presenting α-L-fucosidase activity (EC 3.2.1.51) [1, 2, 3]. Activity has been observed on 4-nitrophenyl-α-L-fucopyranoside (pNP-α-L-Fuc) [2, 3] and on 2-chloro-4-nitrophenyl-α-L-fucopyranoside (CNP-α-L-Fuc) [1]. GH151 α-L-fucosidases are reportedly unable to catalyze hydrolysis of human milk oligosaccharide structures 2'-fucosyllactose (2'FL) and 3-fucosyllactose (3FL) [1, 3], but slight activity has been observed on the blood group H antigen disaccharide Fuc-α-1,2-Gal [1]. No activity was observed on fucosylated xyloglucan [3].

The first characterized members of GH151 were perceived as members of GH29 due to their α-L-fucosidase activity [1, 3]. However, phylogenetic analysis and sequence alignment revealed poor homology to GH29 [1, 3]. Based on the low sequence similarity to GH29, it was suggested that a new GH family be created [2]. Sequence homology to GH42 β-galactosidase trimerization domains has been reported [1, 3]. Consequently, one GH151 α-L-fucosidase was tested for activity on pNP-β-D-Gal, pNP-β-D-Glc, and pNP-β-D-Lac, but none was observed [3].

Kinetics and Mechanism

The catalytic mechanism of GH151 has not been determined, but based on reports that two members of GH151 can catalyze transglycosylation using pNP-α-L-Fuc or CNP-α-L-Fuc as donor substrate [2, 3, 4], a retaining mechanism has been inferred.

Catalytic Residues

In the α-L-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus, Glu235 was assigned as catalytic acid/base and Asp154 as catalytic nucleophile following a combination of mutational, structural, docking, and QM/MM studies [5]. Initially, both Asp9 and Asp154 were investigated as putative nucleophiles. However, docking studies combined with the fact that the variant D9N performed well in transglycosylation [4] indicated that the role of Asp9 is in substrate binding [5].

Three-dimensional structures

The first solved structure in GH151 was that of α-L-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus. It revealed a tetrameric structure with active site complementation by His503 [5].

Family Firsts

First stereochemistry determination
Not yet identified.
First catalytic nucleophile identification
Asp154 in α-L-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus [5].
First general acid/base residue identification
Glu235 in α-L-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus [5].
First 3-D structure
The 3-D structure of α-L-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus [5].

References

  1. Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, and Mills DA. (2012). Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78(3):795-803. DOI:10.1128/AEM.06762-11 | PubMed ID:22138995 [Sela2012]
  2. Benešová E, Lipovová P, Krejzová J, Kovaľová T, Buchtová P, Spiwok V, and Králová B. (2015). Alpha-L-fucosidase isoenzyme iso2 from Paenibacillus thiaminolyticus. BMC Biotechnol. 2015;15:36. DOI:10.1186/s12896-015-0160-x | PubMed ID:26013545 [Benesova2015]
  3. Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, and Mikkelsen JD. (2016). Novel α-L-Fucosidases from a Soil Metagenome for Production of Fucosylated Human Milk Oligosaccharides. PLoS One. 2016;11(1):e0147438. DOI:10.1371/journal.pone.0147438 | PubMed ID:26800369 [Lezyk2016]
  4. Teze D, Zhao J, Wiemann M, Kazi ZGA, Lupo R, Zeuner B, Vuillemin M, Rønne ME, Carlström G, Duus JØ, Sanejouand YH, O'Donohue MJ, Nordberg Karlsson E, Fauré R, Stålbrand H, and Svensson B. (2021). Rational Enzyme Design without Structural Knowledge: A Sequence-Based Approach for Efficient Generation of Transglycosylases. Chemistry. 2021;27(40):10323-10334. DOI:10.1002/chem.202100110 | PubMed ID:33914359 [Teze2021]
  5. Koval'ová T, Kovaľ T, Stránský J, Kolenko P, Dušková J, Švecová L, Vodičková P, Spiwok V, Benešová E, Lipovová P, and Dohnálek J. (2022). The first structure-function study of GH151 α-l-fucosidase uncovers new oligomerization pattern, active site complementation, and selective substrate specificity. FEBS J. 2022;289(16):4998-5020. DOI:10.1111/febs.16387 | PubMed ID:35113503 [Kovalova2022]

All Medline abstracts: PubMed