CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Difference between revisions of "User:Yaoguang Chang"
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[File:Yaoguang Chang.jpg|100px|right]] | [[File:Yaoguang Chang.jpg|100px|right]] | ||
− | Yaoguang Chang obtained his Ph.D. degree from the Ocean University of China and was a visiting scholar at the University of Massachusetts Amherst. At present, he is a professor at the College of Food Science and Engineering, Ocean University of China. His research interests involve the gene-mining and characterization of [[Carbohydrate-active enzymes|CAZymes]] and [[carbohydrate-binding modules]] | + | Yaoguang Chang obtained his Ph.D. degree from the Ocean University of China and was a visiting scholar at the University of Massachusetts Amherst. At present, he is a professor at the College of Food Science and Engineering, Ocean University of China. His research interests involve the gene-mining and characterization of [[Carbohydrate-active enzymes|CAZymes]] and [[carbohydrate-binding modules]] for marine polysaccharides. By utilizing the enzymes and binding proteins as critical tools, novel identification, quantification, and modification methods of marine polysaccharides were established, which would consequently facilitate the development and application of promising functional polysaccharides from the ocean. |
His research group discovered the first member of [[GH168]], [[GH174]], [[GH187]], [[PL44]], [[CBM92]], [[CBM99]], [[CBM100]], [[CBM101]], [[CBM105]] and [[CBM106]] families, and contributed to the studies related to members of the following families: | His research group discovered the first member of [[GH168]], [[GH174]], [[GH187]], [[PL44]], [[CBM92]], [[CBM99]], [[CBM100]], [[CBM101]], [[CBM105]] and [[CBM106]] families, and contributed to the studies related to members of the following families: | ||
− | *[[GH16]]: κ-carrageenase Cgk16A <cite>Shen2018</cite>, βκ-carrageenase Cgbk16A_Wf <cite>Cao2021 | + | '''Glycoside Hydrolase''' |
+ | *[[GH16]]: κ-carrageenase Cgk16A <cite>Shen2018</cite>, βκ-carrageenase Cgbk16A_Wf <cite>Cao2021 Chen2024a</cite>, β-porphyranase Por16A_Wf <cite>Zhang2019</cite>, β-porphyranase Por16C_Wf <cite>Zhang2020</cite>, and laminarinase Lam16A_Wa | ||
*[[GH29]]: fucosidase Alf1_Wf <cite>Dong2017</cite> | *[[GH29]]: fucosidase Alf1_Wf <cite>Dong2017</cite> | ||
*[[GH82]]: ι-carrageenase Cgi82A <cite>Shen2017</cite> | *[[GH82]]: ι-carrageenase Cgi82A <cite>Shen2017</cite> | ||
− | *[[GH86]]: β-agarase Aga86A_Wa <cite>Cao2020 | + | *[[GH86]]: β-agarase Aga86A_Wa <cite>Cao2020 Zhang2023a Zhang2023b</cite> |
− | *[[GH168]]: endo-1,3-fucanase Fun168A <cite>Shen2020</cite>, endo-1,3-fucanase Fun168D <cite>Shen2023</cite>, and endo-1,3-fucanase Fun168E <cite>Shen2024a</cite> | + | *[[GH95]]: fucosidase Afc95A_Wf <cite>Shen2024c</cite> |
− | *[[GH174]]: endo-1,3-fucanase Fun174A <cite>Liu2023a</cite>, endo-1,3-fucanase Fun174Rm, Fun174Ri and Fun174Sb <cite>Shen2024b</cite> | + | *[[GH96]]: α-agarase/α-funoranase BiAF96A_Aq <cite>Zhang2024</cite> |
− | *[[PL7]]: alginate lyase Aly7B_Wf <cite>Pei2019</cite> | + | *[[GH150]]: λ-carrageenase Cgl150A |
+ | *[[GH168]]: endo-1,3-fucanase Fun168A <cite>Shen2020 Chen2024b</cite>, endo-1,3-fucanase Fun168D <cite>Shen2023</cite>, and endo-1,3-fucanase Fun168E <cite>Shen2024a</cite> | ||
+ | *[[GH174]]: endo-1,3-fucanase Fun174A <cite>Liu2023a Chen2024c</cite>, endo-1,3-fucanase Fun174Rm, endo-1,3-fucanase Fun174Ri, and endo-1,3-fucanase Fun174Sb <cite>Shen2024b</cite> | ||
+ | *[[GH187]]: endo-1,3-fucanase Fun187A <cite>Shen2024d</cite> | ||
+ | *[[Multiple GH domain enzymes]]: mannanase Man26/5<cite>Song2024</cite> | ||
+ | '''Polysaccharide Lyase''' | ||
+ | *[[PL6]]: alginate lyase Aly6A <cite>Li2024a</cite> | ||
+ | *[[PL7]]: alginate lyase Aly7B_Wf <cite>Pei2019</cite>, alginate lyase Aly7A <cite>Li2024a</cite>, alginate lyase Aly7Ce <cite>Li2024b</cite>, and alginate lyase Aly7Aq <cite>Li2024c</cite> | ||
+ | *[[PL17]]: alginate lyase Aly17A <cite>Li2024a</cite> | ||
*[[PL44]]: alginate lyase Aly44A <cite>Zhou2024</cite> | *[[PL44]]: alginate lyase Aly44A <cite>Zhou2024</cite> | ||
− | *[[CBM16]]: ABP_Wf (alginate-binding CBM) <cite>Mei2020</cite> | + | '''Carbohydrate-Binding Module''' |
+ | *[[CBM16]]: ABP_Wf (alginate-binding CBM) <cite>Mei2020</cite>, AmCBM16 (porphyran-binding CBM) <cite>Mei2024b</cite> | ||
*[[CBM47]]: WfCBM47 (sulfated fucan-binding CBM) <cite>Mei2022a</cite> | *[[CBM47]]: WfCBM47 (sulfated fucan-binding CBM) <cite>Mei2022a</cite> | ||
*[[CBM70]]: SrCBM70 (hyaluronic acid-binding CBM) <cite>Mei2022b</cite> | *[[CBM70]]: SrCBM70 (hyaluronic acid-binding CBM) <cite>Mei2022b</cite> | ||
Line 20: | Line 30: | ||
*[[CBM100]]: PhCBM100 (chondroitin sulfate-binding CBM) <cite>Liu2023b</cite> | *[[CBM100]]: PhCBM100 (chondroitin sulfate-binding CBM) <cite>Liu2023b</cite> | ||
*[[CBM101]]: WfCBM101 (agarose-binding CBM) <cite>Mei2023b</cite> | *[[CBM101]]: WfCBM101 (agarose-binding CBM) <cite>Mei2023b</cite> | ||
− | |||
*[[CBM105]]: SoCBM (chondroitin sulfate-binding CBM) <cite>Liu2024b</cite> | *[[CBM105]]: SoCBM (chondroitin sulfate-binding CBM) <cite>Liu2024b</cite> | ||
− | *[[CBM106]]: VbCBM106 (alginate-binding CBM) <cite> | + | *[[CBM106]]: VbCBM106 (alginate-binding CBM) <cite>Mei2024a</cite> |
Some of the above biotechnological tools have been successfully integrated with glycomics <cite>Chen2021 Chen2023</cite>, lateral flow immunoassay <cite>Mei2022b</cite>, and other techniques, and served in the structural and chemical investigation of marine polysaccharides. And some enzymes have been employed to produce low molecular weight polysaccharides and oligosaccharides with verified bioactivities <cite>Cheng2022 Li2021</cite>. | Some of the above biotechnological tools have been successfully integrated with glycomics <cite>Chen2021 Chen2023</cite>, lateral flow immunoassay <cite>Mei2022b</cite>, and other techniques, and served in the structural and chemical investigation of marine polysaccharides. And some enzymes have been employed to produce low molecular weight polysaccharides and oligosaccharides with verified bioactivities <cite>Cheng2022 Li2021</cite>. | ||
Line 34: | Line 43: | ||
#Shen2017 pmid=28760444 | #Shen2017 pmid=28760444 | ||
#Cao2020 pmid=32578425 | #Cao2020 pmid=32578425 | ||
− | # | + | #Zhang2023a pmid=36746585 |
+ | #Zhang2023b pmid=37479453 | ||
+ | #Zhang2024 pmid=38763726 | ||
#Shen2020 pmid=32849348 | #Shen2020 pmid=32849348 | ||
#Liu2023a pmid=36746582 | #Liu2023a pmid=36746582 | ||
Line 53: | Line 64: | ||
#Mei2023b pmid=38010608 | #Mei2023b pmid=38010608 | ||
#Liu2024b pmid=38777025 | #Liu2024b pmid=38777025 | ||
− | # | + | #Mei2024a pmid=39069041 |
#Shen2023 pmid=37479433 | #Shen2023 pmid=37479433 | ||
#Shen2024a pmid=39389500 | #Shen2024a pmid=39389500 | ||
#Shen2024b pmid=38616101 | #Shen2024b pmid=38616101 | ||
− | # | + | #Shen2024c pmid=38932571 |
+ | #Shen2024d pmid=37940306 | ||
+ | #Chen2024a pmid=39214858 | ||
+ | #Chen2024b pmid=38795894 | ||
+ | #Chen2024c pmid=39293626 | ||
+ | #Song2024 pmid=38632679 | ||
+ | #Li2024a pmid=37540808 | ||
+ | #Li2024b pmid=38111122 | ||
+ | #Li2024c pmid=39029836 | ||
+ | #Mei2024b pmid=38518929 | ||
</biblio> | </biblio> | ||
Latest revision as of 05:54, 4 November 2024
Yaoguang Chang obtained his Ph.D. degree from the Ocean University of China and was a visiting scholar at the University of Massachusetts Amherst. At present, he is a professor at the College of Food Science and Engineering, Ocean University of China. His research interests involve the gene-mining and characterization of CAZymes and carbohydrate-binding modules for marine polysaccharides. By utilizing the enzymes and binding proteins as critical tools, novel identification, quantification, and modification methods of marine polysaccharides were established, which would consequently facilitate the development and application of promising functional polysaccharides from the ocean. His research group discovered the first member of GH168, GH174, GH187, PL44, CBM92, CBM99, CBM100, CBM101, CBM105 and CBM106 families, and contributed to the studies related to members of the following families:
Glycoside Hydrolase
- GH16: κ-carrageenase Cgk16A [1], βκ-carrageenase Cgbk16A_Wf [2, 3], β-porphyranase Por16A_Wf [4], β-porphyranase Por16C_Wf [5], and laminarinase Lam16A_Wa
- GH29: fucosidase Alf1_Wf [6]
- GH82: ι-carrageenase Cgi82A [7]
- GH86: β-agarase Aga86A_Wa [8, 9, 10]
- GH95: fucosidase Afc95A_Wf [11]
- GH96: α-agarase/α-funoranase BiAF96A_Aq [12]
- GH150: λ-carrageenase Cgl150A
- GH168: endo-1,3-fucanase Fun168A [13, 14], endo-1,3-fucanase Fun168D [15], and endo-1,3-fucanase Fun168E [16]
- GH174: endo-1,3-fucanase Fun174A [17, 18], endo-1,3-fucanase Fun174Rm, endo-1,3-fucanase Fun174Ri, and endo-1,3-fucanase Fun174Sb [19]
- GH187: endo-1,3-fucanase Fun187A [20]
- Multiple GH domain enzymes: mannanase Man26/5[21]
Polysaccharide Lyase
- PL6: alginate lyase Aly6A [22]
- PL7: alginate lyase Aly7B_Wf [23], alginate lyase Aly7A [22], alginate lyase Aly7Ce [24], and alginate lyase Aly7Aq [25]
- PL17: alginate lyase Aly17A [22]
- PL44: alginate lyase Aly44A [26]
Carbohydrate-Binding Module
- CBM16: ABP_Wf (alginate-binding CBM) [27], AmCBM16 (porphyran-binding CBM) [28]
- CBM47: WfCBM47 (sulfated fucan-binding CBM) [29]
- CBM70: SrCBM70 (hyaluronic acid-binding CBM) [30]
- CBM92: Cgk16A-CBM92 (carrageenan-binding CBM) [31]
- CBMnc: Fun174A-CBM (sulfated fucan-binding CBM) [32]
- CBM96: DmCBM96-1 and DmCBM96-2 (chondroitin sulfate-binding CBM) [33]
- CBM99: FvCBM99 (porphyran-binding CBM) [34]
- CBM100: PhCBM100 (chondroitin sulfate-binding CBM) [35]
- CBM101: WfCBM101 (agarose-binding CBM) [36]
- CBM105: SoCBM (chondroitin sulfate-binding CBM) [37]
- CBM106: VbCBM106 (alginate-binding CBM) [38]
Some of the above biotechnological tools have been successfully integrated with glycomics [39, 40], lateral flow immunoassay [30], and other techniques, and served in the structural and chemical investigation of marine polysaccharides. And some enzymes have been employed to produce low molecular weight polysaccharides and oligosaccharides with verified bioactivities [41, 42].
References
- Shen J, Chang Y, Chen F, and Dong S. (2018). Expression and characterization of a κ-carrageenase from marine bacterium Wenyingzhuangia aestuarii OF219: A biotechnological tool for the depolymerization of κ-carrageenan. Int J Biol Macromol. 2018;112:93-100. DOI:10.1016/j.ijbiomac.2018.01.075 |
- Cao S, Zhang Y, Chen G, Shen J, Han J, Chang Y, Xiao H, and Xue C. (2021). Cloning, Heterologous Expression, and Characterization of a βκ-Carrageenase From Marine Bacterium Wenyingzhuangia funcanilytica: A Specific Enzyme for the Hybrid Carrageenan-Furcellaran. Front Microbiol. 2021;12:697218. DOI:10.3389/fmicb.2021.697218 |
- Chen F, Xue C, Chen G, Mei X, Zheng L, and Chang Y. (2024). Structural Insights into the Substrate Recognition and Catalytic Mechanism of a GH16 βκ-Carrageenase from Wenyingzhuangia fucanilytica. J Agric Food Chem. 2024;72(36):20114-20121. DOI:10.1021/acs.jafc.4c05531 |
- Zhang Y, Chang Y, Shen J, and Xue C. (2019). Expression and Characterization of a Novel β-Porphyranase from Marine Bacterium Wenyingzhuangia fucanilytica: A Biotechnological Tool for Degrading Porphyran. J Agric Food Chem. 2019;67(33):9307-9313. DOI:10.1021/acs.jafc.9b02941 |
- Zhang Y, Chang Y, Shen J, Mei X, and Xue C. (2020). Characterization of a Novel Porphyranase Accommodating Methyl-galactoses at Its Subsites. J Agric Food Chem. 2020;68(26):7032-7039. DOI:10.1021/acs.jafc.0c02404 |
- Dong S, Chang Y, Shen J, Xue C, and Chen F. (2017). Purification, expression and characterization of a novel α-l-fucosidase from a marine bacteria Wenyingzhuangia fucanilytica. Protein Expr Purif. 2017;129:9-17. DOI:10.1016/j.pep.2016.08.016 |
- Shen J, Chang Y, Dong S, and Chen F. (2017). Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica: A biocatalyst for producing ι-carrageenan oligosaccharides. J Biotechnol. 2017;259:103-109. DOI:10.1016/j.jbiotec.2017.07.034 |
- Cao S, Shen J, Zhang Y, Chang Y, and Xue C. (2020). Expression and Characterization of a Methylated Galactose-Accommodating GH86 β-Agarase from a Marine Bacterium. J Agric Food Chem. 2020;68(29):7678-7683. DOI:10.1021/acs.jafc.0c02672 |
- Zhang Y, Dong S, Chen G, Cao S, Shen J, Mei X, Cui Q, Feng Y, Chang Y, Wang Y, and Xue C. (2023). Structural characterization on a β-agarase Aga86A_Wa from Wenyingzhuangia aestuarii reveals the prevalent methyl-galactose accommodation capacity of GH86 enzymes at subsite -1. Carbohydr Polym. 2023;306:120594. DOI:10.1016/j.carbpol.2023.120594 |
- Zhang Y, Chen G, Shen J, Mei X, Liu G, Chang Y, Dong S, Feng Y, Wang Y, and Xue C. (2023). The characteristic structure of funoran could be hydrolyzed by a GH86 family enzyme (Aga86A_Wa): Discovery of the funoran hydrolase. Carbohydr Polym. 2023;318:121117. DOI:10.1016/j.carbpol.2023.121117 |
- Shen J, Li J, Zhang Y, Mei X, Xue C, and Chang Y. (2024). Characterization of an α-L-fucosidase in marine bacterium Wenyingzhuangia fucanilytica: new evidence on the catalytic sites of GH95 family glycosidases. J Sci Food Agric. 2024;104(13):8240-8247. DOI:10.1002/jsfa.13659 |
- Zhang Y, Zheng L, Liu G, Shen J, Chen G, Mei X, Chang Y, and Xue C. (2024). The α-linkage in funoran and agarose could be hydrolyzed by a GH96 family enzyme: Discovery of the α-funoranase. Carbohydr Polym. 2024;338:122201. DOI:10.1016/j.carbpol.2024.122201 |
- Shen J, Chang Y, Zhang Y, Mei X, and Xue C. (2020). Discovery and Characterization of an Endo-1,3-Fucanase From Marine Bacterium Wenyingzhuangia fucanilytica: A Novel Glycoside Hydrolase Family. Front Microbiol. 2020;11:1674. DOI:10.3389/fmicb.2020.01674 |
- Chen G, Dong S, Zhang Y, Shen J, Liu G, Chen F, Li X, Xue C, Cui Q, Feng Y, and Chang Y. (2024). Structural investigation of Fun168A unraveling the recognition mechanism of endo-1,3-fucanase towards sulfated fucan. Int J Biol Macromol. 2024;271(Pt 1):132622. DOI:10.1016/j.ijbiomac.2024.132622 |
- Shen J, Chen G, Zhang Y, Mei X, Chang Y, and Xue C. (2023). Characterization of a novel endo-1,3-fucanase from marine bacterium Wenyingzhuangia fucanilytica reveals the presence of diversity within glycoside hydrolase family 168. Carbohydr Polym. 2023;318:121104. DOI:10.1016/j.carbpol.2023.121104 |
- Shen J, Chen G, Zhang Y, Mei X, Zheng L, Xue C, and Chang Y. (2024). Characterization of a novel endo-1,3-fucanase from Wenyingzhuangia fucanilytica within glycoside hydrolase family 168. Int J Biol Macromol. 2024;281(Pt 3):136447. DOI:10.1016/j.ijbiomac.2024.136447 |
- Liu G, Shen J, Chang Y, Mei X, Chen G, Zhang Y, and Xue C. (2023). Characterization of an endo-1,3-fucanase from marine bacterium Wenyingzhuangia aestuarii: The first member of a novel glycoside hydrolase family GH174. Carbohydr Polym. 2023;306:120591. DOI:10.1016/j.carbpol.2023.120591 |
- Chen G, Chen F, Shen J, Liu G, Song X, Xue C, and Chang Y. (2024). The structure investigation of GH174 endo-1,3-fucanase revealed an unusual glycoside hydrolase fold. Int J Biol Macromol. 2024;280(Pt 2):135715. DOI:10.1016/j.ijbiomac.2024.135715 |
- Shen J, Liu G, Chen G, Zhang Y, Mei X, Zheng L, Xue C, and Chang Y. (2024). Biochemical characterization and cleavage specificities analyses of three endo-1,3-fucanases within glycoside hydrolase family 174. Carbohydr Polym. 2024;335:122083. DOI:10.1016/j.carbpol.2024.122083 |
- Shen J, Zheng L, Zhang Y, Chen G, Mei X, Chang Y, and Xue C. (2024). Discovery of a catalytic domain defines a new glycoside hydrolase family containing endo-1,3-fucanase. Carbohydr Polym. 2024;323:121442. DOI:10.1016/j.carbpol.2023.121442 |
- Song X, Li J, Chang Y, Mei X, Luan J, Jiang X, and Xue C. (2024). The Discovery of a Multidomain Mannanase Containing Dual-Catalytic Domain of the Same Activity: Biochemical Properties and Synergistic Effect. J Agric Food Chem. 2024;72(18):10451-10458. DOI:10.1021/acs.jafc.3c09611 |
- Li J, Pei X, Xue C, Chang Y, Shen J, and Zhang Y. (2024). A repertoire of alginate lyases in the alginate polysaccharide utilization loci of marine bacterium Wenyingzhuangia fucanilytica: biochemical properties and action pattern. J Sci Food Agric. 2024;104(1):134-140. DOI:10.1002/jsfa.12898 |
- Pei X, Chang Y, and Shen J. (2019). Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expr Purif. 2019;154:44-51. DOI:10.1016/j.pep.2018.09.010 |
- Li J, Xue C, Shen J, Liu G, Mei X, Sun M, and Chang Y. (2024). Action Pattern of a Novel G-Specific Alginate Lyase: Determination of Subsite Specificity by HPAEC-PAD/MS. J Agric Food Chem. 2024;72(2):1170-1177. DOI:10.1021/acs.jafc.3c06778 |
- Li J, Sun M, Liu G, Zhou J, Chang Y, and Xue C. (2024). Characterization and elucidation of a novel M-specific alginate lyase Aly7Aq with strict recognition at subsites ±2. Int J Biol Macromol. 2024;277(Pt 1):133972. DOI:10.1016/j.ijbiomac.2024.133972 |
- Zhou J, Li J, Chen G, Zheng L, Mei X, Xue C, and Chang Y. (2024). Discovery and characterization of a novel poly-mannuronate preferred alginate lyase: The first member of a new polysaccharide lyase family. Carbohydr Polym. 2024;343:122474. DOI:10.1016/j.carbpol.2024.122474 |
- Mei X, Chang Y, Shen J, Zhang Y, and Xue C. (2020). Expression and characterization of a novel alginate-binding protein: A promising tool for investigating alginate. Carbohydr Polym. 2020;246:116645. DOI:10.1016/j.carbpol.2020.116645 |
- Mei X, Liu G, Chen G, Zhang Y, Xue C, and Chang Y. (2024). Characterization and structural identification of a family 16 carbohydrate-binding module (CBM): First structural insights into porphyran-binding CBM. Int J Biol Macromol. 2024;265(Pt 2):131041. DOI:10.1016/j.ijbiomac.2024.131041 |
- Mei X, Chang Y, Shen J, Zhang Y, Chen G, Liu Y, and Xue C. (2022). Characterization of a sulfated fucan-specific carbohydrate-binding module: A promising tool for investigating sulfated fucans. Carbohydr Polym. 2022;277:118748. DOI:10.1016/j.carbpol.2021.118748 |
- Mei X, Sun M, Zhang Y, Shen J, Li J, Xue C, and Chang Y. (2022). Establishment of a carbohydrate binding module-based lateral flow immunoassay method for identifying hyaluronic acid. Int J Biol Macromol. 2022;223(Pt A):1180-1185. DOI:10.1016/j.ijbiomac.2022.11.122 |
- Mei X, Chang Y, Shen J, Zhang Y, Han J, and Xue C. (2022). Characterization of a Novel Carrageenan-Specific Carbohydrate-Binding Module: a Promising Tool for the In Situ Investigation of Carrageenan. J Agric Food Chem. 2022;70(29):9066-9072. DOI:10.1021/acs.jafc.2c03139 |
- Mei X, Liu G, Shen J, Chen G, Zhang Y, Xue C, and Chang Y. (2023). Discovery of a sulfated fucan-specific carbohydrate-binding module: The first member of a new carbohydrate-binding module family. Int J Biol Macromol. 2023;238:124037. DOI:10.1016/j.ijbiomac.2023.124037 |
- Liu G, Mei X, Zhang Y, Chen G, Li J, Tao W, Sun M, Zheng L, Chang Y, and Xue C. (2024). Characterization and Structural Analysis of a Novel Carbohydrate-Binding Module from Family 96 with Chondroitin Sulfate-Specific Binding Capacity. J Agric Food Chem. 2024;72(23):13196-13204. DOI:10.1021/acs.jafc.4c00090 |
- Mei X, Zhang Y, Liu G, Shen J, Han J, Xue C, Xiao H, and Chang Y. (2023). Characterization of a novel carbohydrate-binding module specifically binding to the major structural units of porphyran. Int J Biol Macromol. 2023;253(Pt 5):127106. DOI:10.1016/j.ijbiomac.2023.127106 |
- Liu G, Chang Y, Mei X, Chen G, Zhang Y, Jiang X, Tao W, and Xue C. (2024). Identification and structural characterization of a novel chondroitin sulfate-specific carbohydrate-binding module: The first member of a new family, CBM100. Int J Biol Macromol. 2024;255:127959. DOI:10.1016/j.ijbiomac.2023.127959 |
- Mei X, Zhang Y, Jiang X, Liu G, Shen J, Xue C, Xiao H, and Chang Y. (2024). Discovery and characterization of a novel carbohydrate-binding module: a favorable tool for investigating agarose. J Sci Food Agric. 2024;104(5):2792-2797. DOI:10.1002/jsfa.13164 |
- Liu G, Song L, Li J, Song X, Mei X, Zhang Y, Fan C, Chang Y, and Xue C. (2024). Identification and characterization of a chondroitinase ABC with a novel carbohydrate-binding module. Int J Biol Macromol. 2024;271(Pt 1):132518. DOI:10.1016/j.ijbiomac.2024.132518 |
- Mei X, Tao W, Sun H, Liu G, Chen G, Zhang Y, Xue C, and Chang Y. (2024). Characterization and structural identification of a novel alginate-specific carbohydrate-binding module (CBM): The founding member of a new CBM family. Int J Biol Macromol. 2024;277(Pt 3):134221. DOI:10.1016/j.ijbiomac.2024.134221 |
- Chen G, Yu L, Zhang Y, Chang Y, Liu Y, Shen J, and Xue C. (2021). Utilizing heterologously overexpressed endo-1,3-fucanase to investigate the structure of sulfated fucan from sea cucumber (Holothuria hilla). Carbohydr Polym. 2021;272:118480. DOI:10.1016/j.carbpol.2021.118480 |
- Chen G, Shen J, Zhang Y, Shi F, Mei X, Xue C, and Chang Y. (2023). Sulfated fucan could serve as a species marker of sea cucumber with endo-1,3-fucanase as the essential tool. Carbohydr Polym. 2023;312:120817. DOI:10.1016/j.carbpol.2023.120817 |
- Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, and Tang Q. (2022). The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct. 2022;13(12):6777-6791. DOI:10.1039/d2fo00055e |
- Li Y, Tian Y, Cai W, Wang Q, Chang Y, Sun Y, Dong P, and Wang J. (2021). Novel ι-Carrageenan Tetrasaccharide Alleviates Liver Lipid Accumulation via the Bile Acid-FXR-SHP/PXR Pathway to Regulate Cholesterol Conversion and Fatty Acid Metabolism in Insulin-Resistant Mice. J Agric Food Chem. 2021;69(34):9813-9821. DOI:10.1021/acs.jafc.1c04035 |