CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "User:Daniel Kracher"

From CAZypedia
Jump to navigation Jump to search
m (Text replacement - "\^\^\^(.*)\^\^\^" to "$1")
Line 5: Line 5:
 
I was born and raised in the south of Austria (Fürstenfeld) but moved to Vienna to study Food and Biotechnology at the [http://www.boku.ac.at BOKU University].
 
I was born and raised in the south of Austria (Fürstenfeld) but moved to Vienna to study Food and Biotechnology at the [http://www.boku.ac.at BOKU University].
  
I obtained both my Master and Ph.D. in the group of ^^^Roland Ludwig^^^ [http://www.ludwiglab.at/ (-> link)], where I focused on the biochemical investigation of fungal redox-enzymes and their application in biocatalysis and biorefinery <cite>Kracher2014 Kracher2013</cite>. In particular, I studied the kinetics and electron transfer reactions of fungal cellobiose dehydrogenases (CDH), and their involvement in lignocellulose degradation <cite>Kracher2012 Kracher2015 Kracher2015b Ma2017</cite>.  
+
I obtained both my Master and Ph.D. in the group of [[User:Roland Ludwig|Roland Ludwig]] [http://www.ludwiglab.at/ (-> link)], where I focused on the biochemical investigation of fungal redox-enzymes and their application in biocatalysis and biorefinery <cite>Kracher2014 Kracher2013</cite>. In particular, I studied the kinetics and electron transfer reactions of fungal cellobiose dehydrogenases (CDH), and their involvement in lignocellulose degradation <cite>Kracher2012 Kracher2015 Kracher2015b Ma2017</cite>.  
  
 
The activation of lytic polysaccharide monooxygenases by CDH later became a central point of my research <cite>Kracher2016 Kracher2018</cite>.
 
The activation of lytic polysaccharide monooxygenases by CDH later became a central point of my research <cite>Kracher2016 Kracher2018</cite>.

Revision as of 13:34, 18 December 2021

DKracher.png


I was born and raised in the south of Austria (Fürstenfeld) but moved to Vienna to study Food and Biotechnology at the BOKU University.

I obtained both my Master and Ph.D. in the group of Roland Ludwig (-> link), where I focused on the biochemical investigation of fungal redox-enzymes and their application in biocatalysis and biorefinery [1, 2]. In particular, I studied the kinetics and electron transfer reactions of fungal cellobiose dehydrogenases (CDH), and their involvement in lignocellulose degradation [3, 4, 5, 6].

The activation of lytic polysaccharide monooxygenases by CDH later became a central point of my research [7, 8].

Since April 2018 I am working at the Manchester Institute of Biotechnology (MIB) in Prof. Nigel Scrutton`s group.



  1. Kracher D, Oros D, Yao W, Preims M, Rezic I, Haltrich D, Rezic T, and Ludwig R. (2014). Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J. 2014;9(4):483-92. DOI:10.1002/biot.201300214 | PubMed ID:24677771 [Kracher2014]
  2. Mulla D, Kracher D, Ludwig R, Nagy G, Grandits M, Holzer W, Saber Y, Gabra N, Viernstein H, and Unger FM. (2013). Azido derivatives of cellobiose: oxidation at C1 with cellobiose dehydrogenase from Sclerotium rolfsii. Carbohydr Res. 2013;382:86-94. DOI:10.1016/j.carres.2013.09.004 | PubMed ID:24211370 [Kracher2013]
  3. Sygmund C, Kracher D, Scheiblbrandner S, Zahma K, Felice AK, Harreither W, Kittl R, and Ludwig R. (2012). Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation. Appl Environ Microbiol. 2012;78(17):6161-71. DOI:10.1128/AEM.01503-12 | PubMed ID:22729546 [Kracher2012]
  4. Kracher D, Zahma K, Schulz C, Sygmund C, Gorton L, and Ludwig R. (2015). Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations. FEBS J. 2015;282(16):3136-48. DOI:10.1111/febs.13310 | PubMed ID:25913436 [Kracher2015]
  5. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, and Divne C. (2015). Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun. 2015;6:7542. DOI:10.1038/ncomms8542 | PubMed ID:26151670 [Kracher2015b]
  6. Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, Kracher D, and Ludwig R. (2017). Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb Cell Fact. 2017;16(1):37. DOI:10.1186/s12934-017-0653-5 | PubMed ID:28245812 [Ma2017]
  7. Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, and Ludwig R. (2016). Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352(6289):1098-101. DOI:10.1126/science.aaf3165 | PubMed ID:27127235 [Kracher2016]
  8. Kracher D, Andlar M, Furtmüller PG, and Ludwig R. (2018). Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. J Biol Chem. 2018;293(5):1676-1687. DOI:10.1074/jbc.RA117.000109 | PubMed ID:29259126 [Kracher2018]

All Medline abstracts: PubMed