CAZypedia celebrates the life of Senior Curator Emeritus Harry Gilbert, a true giant in the field, who passed away in September 2025.
CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article. Totally new to the CAZy classification? Read this first.
Difference between revisions of "Syn/anti lateral protonation"
Wim Nerinckx (talk | contribs) (All pdb IDs in the new 12-character format) |
Wim Nerinckx (talk | contribs) (proton donor residue number correction in GH30: Glu165 (not 163)) |
||
| Line 432: | Line 432: | ||
| ''Dickea chrysanthemi'' D1 | | ''Dickea chrysanthemi'' D1 | ||
| glucuronoxylan tetrasaccharide | | glucuronoxylan tetrasaccharide | ||
| − | | ''' | + | | '''Glu165''' |
| Glu253 | | Glu253 | ||
| <cite>Urbanikova2011</cite> | | <cite>Urbanikova2011</cite> | ||
Latest revision as of 10:18, 8 October 2025
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
Overview
This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].
Background
The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.
Closer inspection of crystal structures of –1/+1 subsite-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary [2, 3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5, 6, 7]. Anti protonation occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that anti protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).
Syn protonating glycoside hydrolases apparently make use of a different approach [2, 3]. In many –1/+1 subsite-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the syn half-space, allowing it to be protonated by the syn-positioned proton donor (Figure 1 right).
Table of syn/anti protonation examples
This table contains only one example per GH family of a ligand-complexed protein structure where the syn or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.
Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.
Table
This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the View tab at the very top of the page.
| Family | Clan | Structure fold | Anomeric specificity | Mechanism | Syn/anti protonator | Example PDB ID | Enzyme | Organism | Ligand | General acid | Nucleophile or General base | Reference |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GH1 | A | (β/α)8 | beta-d | retaining | anti | pdb_00002cer | β-glycosidase S | Sulfolobus solfataricus P2 | phenethyl glucoimidazole | Glu206 | Glu387 | [8] |
| GH2 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | pdb_00002vzu | exo-β-glucosaminidase | Amicolatopsis orientalis | PNP-β-d-glucosamine | Glu469 | Glu541 | [9] |
| GH3 | none | (β/α)8 | beta-d / alpha-l | retaining | anti | pdb_00001iex | exo-1,3-1,4-glucanase | Hordeum vulgare | thiocellobiose | Glu491 | Asp285 | [10] |
| GH4 | none | Rossmann + α6/β3 + β3/α4 | beta-d | retaining | anti | pdb_00001u8x | 6-P-α-glucosidase | Bacillus subtilis | alpha-d-glucose-6-phosphate | Asp172 | not applicable | [11] |
| GH5 | A | (β/α)8 | beta-d | retaining | anti | pdb_00001h2j | endo-β-1,4-glucanase | Bacillus agaradhaerens | 2',4'-DNP-2-F-cellobioside | Glu129 | Glu228 | [12] |
| GH6 | none | (β/α)8 | beta-d | inverting | syn | pdb_00001qjw | cellobiohydrolase 2 | Hypocrea jecorina | (Glc)2-S-(Glc)2 | Asp221 | debated | [13] |
| GH7 | B | β-jelly roll | beta-d | retaining | syn | pdb_00001ovw | endo-1,4-glucanase | Fusarium oxysporum | thio-(Glc)5 | Glu202 | Glu197 | [14] |
| GH8 | M | (α/α)6 | beta-d | inverting | anti | pdb_00001kwf | endo-1,4-glucanase | Clostridium thermocellum | cellopentaose | Glu95 | Asp278 | [15] |
| GH9 | none | (α/α)6 | beta-d | inverting | syn | pdb_00001rq5 | cellobiohydrolase | Clostridium thermocellum | cellotetraose | Glu795 | Asp383 | [16] |
| GH10 | A | (β/α)8 | beta-d | retaining | anti | pdb_00002d24 | β-1,4-xylanase | Streptomyces olivaceoviridis E-86 | xylopentaose | Glu128 | Glu236 | [17] |
| GH11 | C | β-jelly roll | beta-d | retaining | syn | pdb_00004hk8 | endo-β-1,4-xylanase | Hypocrea jecorina | xylohexaose | Glu177 | Glu86 | [18] |
| GH12 | C | β-jelly roll | beta-d | retaining | syn | pdb_00001w2u | endoglucanase | Humicola grisea | thiocellotetraose | Glu205 | Glu120 | [19] |
| GH13 | H | (β/α)8 | alpha-d | retaining | anti | pdb_00001cxk | β-cyclodextrin glucanotransferase | Bacillus circulans | maltononaose | Glu257 | Asp229 | [20] |
| GH14 | none | (β/α)8 | alpha-d | inverting | syn | pdb_00001itc | β-amylase | Bacillus cereus | maltopentaose | Glu172 | Glu367 | [21] |
| GH15 | L | (α/α)6 | alpha-d | inverting | anti | pdb_00001dog | glucoamylase | Aspergillus awamori | 1-deoxynojirimycin | Glu179 | Glu400 | [22] |
| GH16 | B | β-jelly roll | beta-d | retaining | syn | pdb_00001urx | β-agarase A | Zobellia galactanivorans | oligoagarose | Glu152 | Glu147 | [23] |
| GH17 | A | (β/α)8 | beta-d | retaining | anti | pdb_00004gzj | endo-β-1,3-glucanase | Solanum tuberosum | laminaratriose + laminarabiose | Glu118 | Glu259 | [24] |
| GH18 | K | (β/α)8 | beta-d | retaining | anti | pdb_00001ffr | chitinase A | Serratia marcescens | (NAG)6 | Glu315 | internal | [25] |
| GH19 | none | lysozyme type | beta-d | inverting | syn | pdb_00003wh1 | chitinase | Bryum coronatum | (GlcNAc)4 | Glu61 | Glu70 | [26] |
| GH20 | K | (β/α)8 | beta-d | retaining | anti | pdb_00001c7s | chitobiase | Serratia marcescens | chitobiose | Glu540 | internal | [27] |
| GH22 | none | lysozyme type | beta-d | retaining | syn | pdb_00001h6m | lysozyme C | Gallus gallus | Chit-2-F-chitosyl | Glu35 | Asp52 | [28] |
| GH23 | none | lysozyme type | beta-d | inverting | syn | pdb_00001lsp | lysozyme G | Cygnus atratus | Bulgecin A | Glu73 | internal | [29] |
| GH24 | I | α + β | beta-d | inverting | syn | pdb_0000148l | lysozyme E | Bacteriophage T4 | chitobiosyl | Glu11 | Glu26 | [30] |
| GH26 | A | (β/α)8 | beta-d | retaining | anti | pdb_00002vx6 | exo-β-mannanase | Cellvibrio japonicus Ueda107 | Gal1Man4 | Glu221 | Glu338 | [31] |
| GH27 | D | (β/α)8 | alpha-d / beta-l | retaining | anti | pdb_00003lrm | α-galactosidase | Saccharomyces cerevisiae | raffinose | Asp209 | Asp141 | [32] |
| GH28 | N | β-helix | alpha-d (and α-l-rham) | inverting | anti | pdb_00002uvf | exo-polygalacturonosidase | Yersinia enterocolitica ATCC9610D | digalacturonic acid | Asp402 | Asp381 Asp403 | [33] |
| GH29 | R | (β/α)8 | alpha-l | retaining | syn | pdb_00003uet | α-1,3/4-fucosidase | Bifidobacterium longum subsp. infantis | lacto-N-fucopentaose II | Glu217 | Asp172 | [34] |
| GH30 | A | (β/α)8 | beta-d | retaining | anti | pdb_00002y24 | glucurono-xylanase | Dickea chrysanthemi D1 | glucuronoxylan tetrasaccharide | Glu165 | Glu253 | [35] |
| GH31 | D | (β/α)8 | alpha-d | retaining | anti | pdb_00002qmj | maltase-glucoamylase | Homo sapiens | acarbose | Asp542 | Asp443 | [36] |
| GH32 | J | 5-fold β-propeller | beta-d | retaining | anti | pdb_00002add | fructan β-(2,1)-fructosidase | Cichorium intybus | sucrose | Glu201 | Asp22 | [37] |
| GH33 | E | 6-fold β-propeller | alpha-d | retaining | anti | pdb_00001s0i | transsialidase | Trypanosoma cruzi | sialyllactose | Asp59 | Tyr342 (with Glu230) | [38] |
| GH34 | E | 6-fold β-propeller | alpha-d | retaining | anti | pdb_00004gzw | N2 neuraminidase | Influenza A Tanzania/205/2010 H3N2 | α-d-Neup5Ac-(2,3)-β-d-Galp-(1,4)-β-d-GlcpNAc | Asp151 | Tyr406 (with Glu277) | [39] |
| GH35 | A | (β/α)8 | beta-d | retaining | anti | pdb_00003ogv | β-galactosidase | Hypocrea jecorina | 2-phenylethyl 1-thio-β-d-galactopyranoside | Glu200 | Glu298 | [40] |
| GH36 | D | (β/α)8 | alpha-d | retaining | anti | pdb_00004fnu | β-galactosidase | Geobacillus stearothermophilus | stachyose | Asp584 | Asp478 | [41] |
| GH37 | G | (α/α)6 | alpha-d | inverting | anti | pdb_00002jf4 | trehalase | Escherichia coli | validoxylamine | Asp312 | Glu496 | [42] |
| GH38 | none | (β/α)7 | alpha-d | retaining | anti | pdb_00003czn | Golgi α-mannosidase II | Drosophila melanogaster | GlcNAcMan(5)GlcNAc(2) | Asp341 | Asp204 | [43] |
| GH39 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | pdb_00002bfg | β-xylosidase | Geobacillus stearothermophilus | 2,5-dinitrophenyl-β-d-xyloside | Glu160 | Glu278 | [44] |
| GH42 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | pdb_00004ucf | β-galactosidase | Bifidobacterium bifidum | d-galactose | Glu161 | Glu320 | [45] |
| GH43 | F | 5-fold β-propeller | beta-d / alpha-l | inverting | anti | pdb_00003akh | exo-1,5-α-l-arabinofuranosidase | Streptomyces avermitilis | α-1,5-arabinofuranotriose | Glu196 | Asp220 | [46] |
| GH44 | none | (β/α)8 | beta-d | retaining | anti | pdb_00002eqd | endoglucanase | Clostridium thermocellum | cellooctaose | Glu186 | Glu359 | [47] |
| GH45 | none | 6-stranded β-barrel | beta-d | inverting | syn | pdb_00004eng | endo-1,4-glucanase | Humicola insolens | cellohexaose | Asp121 | Asp10 | [48] |
| GH46 | I | lysozyme type | beta-d | inverting | syn | pdb_00004olt | chitosanase | Microbacterium sp. OU01 | hexa-glucosamine | Glu25 | Asp43 | [49] |
| GH47 | none | (α/α)7 | alpha-d | inverting | anti | pdb_00001x9d | α-mannosidase I | Homo sapiens | Me-2-S-(α-Man)-2-thio-α-Man | Asp463 | Glu599 | [50], [51] |
| GH48 | M | (α/α)6 | beta-d | inverting | predicted anti by clan | see at GH8 | ||||||
| GH49 | N | β-helix | alpha-d | inverting | predicted anti by clan | see at GH28 | ||||||
| GH50 | A | (β/α)8 | beta-d | retaining | anti | pdb_00004bq5 | exo-β-agarase | Saccharophagus degradans | neoagarotetraose | Glu535 | Glu695 | [52] |
| GH51 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | pdb_00001qw9 | α-l-arabinofuranosidase | Geobacillus stearothermophilus | PNP-l-arabinofuranoside | Glu175 | Glu294 | [53] |
| GH52 | O | (α/α)6 | beta-d | retaining | predicted perpendicular by clan, see at GH116 | pdb_00004c1p | β-xylosidase | Geobacillus thermoglucosidasius | xylobiose | Asp517 | Glu537 | [54] |
| GH53 | A | (β/α)8 | beta-d | retaining | anti | pdb_00002ccr | β-1,4-galactanase | Bacillus licheniformis | galactotriose | Glu165 | Glu263 | [55] |
| GH54 | none | β-sandwich | beta-d / alpha-l | retaining | anti | pdb_00001wd4 | α-l-arabinofuranosidase B | Aspergillus kawachii | l-arabinofuranose | Asp297 | Glu221 | [56] |
| GH55 | none | β-helix | beta-d | inverting | syn | pdb_00004tz5 | exo-β-1,3-glucanase | Streptomyces sp. SirexAA-E | laminarihexaose | Glu502 | unknown | [57] |
| GH56 | none | (β/α)7 | beta-d | retaining | anti | pdb_00001fcv | hyaluronidase | Apis mellifera | (hyaluron.)4 | Glu113 | internal | [58] |
| GH57 | T | (β/α)7 | alpha-d | retaining | anti | pdb_00001k1y | glucanotransferase | Thermococcus litoralis | acarbose | Asp214 | Glu123 | [59] |
| GH59 | A | (β/α)8 | beta-d | retaining | anti | pdb_00004ccc | β-galactocerebrosidase | Mus musculus | PNP-β-d-galactoside | Glu182 | Glu258 | [60] |
| GH62 | F | 5-fold β-propeller | alpha-l | inverting | anti | pdb_00003wn0 | α-l-arabinofuranosidase | Streptomyces coelicolor | β-l-Arabinofuranose | Glu361 | Asp202 | [61] |
| GH63 | G | (α/α)6 | alpha-d | inverting | anti | pdb_00005ca3 | α-glucosidase | Escherichia coli | glucose and lactose | Asp501 | Glu727 | [62] |
| GH65 | L | (α/α)6 | alpha-d (and α-l-rham) | inverting | anti | pdb_00004ktr | 2-O-α-glucosylglycerol phosphorylase | Bacillus selenitireducens | isofagomine | Glu475 | phosphate | [63] |
| GH66 | none | (β/α)8 | alpha-d | retaining | anti | pdb_00005axh | dextranase | Thermoanaerobacter pseudethanolicus | isomaltohexaose | Glu374 | Asp312 | [64] |
| GH67 | none | (β/α)8 | alpha-d | inverting | syn | pdb_00001l8n | α-glucuronidase | Geobacillus stearothermophilus | 4-O-methyl-d-glucuronic acid and xylotriose | Glu286 | Asp364 Glu392 | [65] |
| GH68 | J | 5-fold β-propeller | beta-d | retaining | anti | pdb_00001pt2 | levansucrase | Bacillus subtilis | sucrose | Glu342 | Asp86 | [66] |
| GH70 | H | (β/α)8 | alpha-d | retaining | anti | pdb_00003aic | glucansucrase | Streptococcus mutans | α-acarbose | Glu515 | Asp477 | [67] |
| GH72 | A | (β/α)8 | beta-d | retaining | anti | pdb_00002w62 | β-1,3-glucanotransferase | Saccharomyces cerevisiae S288C | laminaripentaose | Glu176 | Glu275 | [68] |
| GH73 | none | lysozyme type | beta-d | unknown | syn | pdb_00007pod | peptidoglycan endo-β-1,4-N-acetylglucosaminidase | Streptococcus pneumoniae R6 | NAG-NAM-NAG-NAM tetrasaccharide | Glu585 | unknown | [69] |
| GH74 | none | 7-fold β-propeller | beta-d | inverting | syn | pdb_00002ebs | cellobiohydrolase (OXG-RCBH) | Geotrichum sp. m128 | xyloglucan heptasaccharide | Asp465 | Asp35 | [70] |
| GH76 | none | (α/α)6 | alpha-d | retaining | anti | pdb_00005agd | endo-α-1,6-mannanase | Bacillus circulans | α-1,6-mannopentaose | Asp125 | Asp124 | [71] |
| GH77 | H | (β/α)8 | alpha-d | retaining | anti | pdb_00002oww | 4-α-glucanotransferase | Thermus thermofilus | acarbose + 4-deoxy-α-d-glucose | Glu340 | Asp293 | [72] |
| GH78 | H | (α/α)6 | alpha-l | inverting | anti | pdb_00003w5n | α-l-rhamnosidase | Streptomyces avermitilis | l-rhamnose | Glu636 | Glu895 | [73] |
| GH79 | A | (β/α)8 | beta-d | retaining | anti | pdb_00005e9c | heparanase | Homo sapiens | heparin tetrasaccharide | Glu225 | Glu343 | [74] |
| GH80 | I | α + β | beta-d | inverting | predicted syn by clan | see at GH24 | ||||||
| GH81 | none | β-sandwich | beta-d | inverting | syn | pdb_00005t4g | endo-β-1,3-glucanase | Bacillus halodurans C-125 | laminarin | Asp466 | Glu542 | [75] |
| GH83 | E | 6-fold β-propeller | alpha-d | retaining | anti | pdb_00001z4x | hemagglutinin-neuraminidase | Simian virus 5 | α-2,3-sialyllactose | Asp187 on flexible loop | Tyr523 (with Glu390) | [76] |
| GH84 | none | (β/α)8 | beta-d | retaining | anti | pdb_00002chn | β-N-acetyl-glucosaminidase | Bacteroides thetaiotaomicron VPI-5482 | NAG-thiazoline | Glu242 | internal | [77] |
| GH85 | K | (β/α)8 | beta-d | retaining | anti | pdb_00002w92 | endo-β-N-acetyl-glucosaminidase D | Streptococcus pneumoniae TIGR4 | NAG-thiazoline | Glu337 | internal | [78] |
| GH86 | A | (β/α)8 | beta-d | retaining | anti | pdb_00004aw7 | β-porphyranase | Bacteroides plebeius | porphyran fragment | Glu152 | Glu279 | [79] |
| GH89 | none | (β/α)8 | alpha-d | retaining | anti | pdb_00002vcb | α-N-acetyl-glucosaminidase | Clostridium perfringens | PUGNAc | Glu483 | Glu601 | [80] |
| GH92 | none | (α/α)6 and β-sandwich | alpha-d | inverting | anti | pdb_00002ww1 | α-1,2-mannosidase | Bacteroides thetaiotaomicron VPI-5482 | thiomannobioside | Glu533 | Asp644 Asp642 | [81] |
| GH93 | E | 6-fold β-propeller | alpha-l | retaining | anti | pdb_00003a72 | exo-arabinanase | Penicillium chrysogenum | arabinobiose | Glu246 | Glu174 | [82] |
| GH94 | Q | (α/α)6 | beta-d | inverting | syn | pdb_00004zli | cellobionic acid phosphorylase | Saccharophagus degradans | 3-O-β-d-glucopyranosyl-α-d-glucopyranuronic acid | Asp472 | phosphate | [83] |
| GH95 | none | (α/α)6 | alpha-l | inverting | anti | pdb_00002ead | α-1,2-l-fucosidase | Bifidobacterium bifidum | Fuc-α-1,2-Gal | Glu566 | Asn423 Asp766 | [84] |
| GH97 | none | (β/α)8 | alpha-d | retaining + inverting | anti | pdb_00002zq0 | α-glucosidase | Bacteroides thetaiotaomicron VPI-5482 | acarbose | Glu532 | Glu508 | [85] |
| GH98 | none | (β/α)8 and β-sandwich | beta-d | inverting | anti | pdb_00002wmg | endo-β-1,4-galactosidase | Streptococcus pneumoniae | A-LewisY pentasaccharide | Glu158 | Asp251 Glu301 | [86] |
| GH99 | none | (β/α)8 | alpha-d | retaining | anti | pdb_00004ad4 | endo-α-mannosidase | Bacteroides xylanisolvens | glucose-1,3-isofagomine and α-1,2- mannobiose | Glu336 | debated | [87] |
| GH100 | G | (α/α)6 core | beta-d | inverting | anti | pdb_00005gop | invertase | Anabaena (Nostoc) sp. pcc7120 | sucrose | Asp188 | Glu414 | [88] |
| GH101 | none | (β/α)8 | alpha-d | retaining | anti | pdb_00005a56 | endo-α-N-acetylgalactosaminidase | Streptococcus pneumoniae TIGR4 | β-d-Galp-(1-3)-α-d-GalpNAc-(1)-methyl | Glu796 +water | Asp764 | [89] |
| GH102 | none | double-ψ β-barrel | beta-d | retaining | syn | pdb_00002pi8 | lytic transglycosylase A | Escherichia coli | chitohexaose | Asp308 | none | [90] |
| GH103 | none | lysozyme type | beta-d | retaining | syn | pdb_00001d0k | lytic transglycosylase SLT35 | Escherichia coli | murodipeptides | Glu162 | internal | [91] |
| GH106 | none | (β/α)8 | alpha-l | inverting | anti | pdb_00005mwk | α-l-rhamnosidase BT_0986 | Bacteroides thetaiotaomicron | pectin heptasaccharide | Glu461 | Glu593 or Glu561 | [92] |
| GH107 | R | (β/α)8 | alpha-l | retaining | predicted syn by clan | see at GH29 | ||||||
| GH110 | none | parallel β-helix | alpha-d | inverting | anti | pdb_00007jwf | α-1,3-galactosidase | Pseudoalteromonas distincta | Gal-α1,3-Gal | Asp344 | Asp321 Asp345 | [93] |
| GH113 | A | (β/α)8 | beta-d | retaining | anti | pdb_00004cd8 | β-mannanase | Alicyclobacillus acidocaldarius | mannobioimidazole | Glu151 | Glu231 | [94] |
| GH116 | O | (α/α)6 and β-sandwich | beta-d | retaining | perpendicular (anomaly) | pdb_00008i5u | β-glucosidase | Thermoanaerobacterium xylanolyticum LX-11 | laminaribiose | Asp593 | Glu441 | [95] |
| GH117 | F | 5-fold β-propeller | alpha-l | inverting | anti | pdb_00004ak7 | α-1,3-3,6-anhydro-l-galactosidase | Bacteroides plebeius | neoagarobiose | His302 (relay from Asp320) | Asp90 | [96] |
| GH119 | T | (β/α)7 | alpha-d | retaining | predicted anti by clan | see at GH57 | ||||||
| GH120 | none | parallel β-helix and β-sandwich | beta-d | retaining | anti | pdb_00003vsv | β-xylosidase XylC | Thermoanaerobacterium saccharolyticum JW/SL-YS485 | d-xylose | Glu405 | Asp382 | [97] |
| GH123 | none | (β/α)8 and β-sandwich | beta-d | retaining | anti | pdb_00005fr0 | exo-β-N-acetyl-galactosaminidase | Clostridium perfringens | N-difluoroacetyl-d-galactosamine | Glu345 | internal | [98] |
| GH124 | none | lysozyme type | beta-d | inverting | syn | pdb_00006g1i | endo-β-1,4-glucanase | Acetivibrio thermocellus ATCC 27405 | fructosylated cellopentaose | Glu203 | unknown | [99] |
| GH125 | L | (α/α)6 | alpha-d | inverting | anti | pdb_00005m7y | exo-α-1,6-mannosidase | Clostridium perfringens | 1,6-α-mannotriose | Asp220 | Glu393 | [100] |
| GH127 | P | (α/α)6 and β-sandwich | beta-l | retaining | anti | pdb_00003wrg | β-l-arabinofuranosidase | Bifidobacterium longum | l-arabinose | Glu322 | Cys417 | [101] |
| GH128 | A | (β/α)8 | beta-d | retaining | anti | pdb_00006ufl | β-1,3-glucanase | Amycolatopsis mediterranei | laminarihexaose | Glu102 | Glu199 | [102] |
| GH129 | none | (β/α)8 | alpha-d | retaining | anti | pdb_00005wzn | exo-α-N-acetylgalactosaminidase (NagBb) | Bifidobacterium bifidum JCM 1254 | GalNAc | Glu478 | Asp435 | [103] |
| GH130 | none | 5-fold β-propeller | beta-d | inverting | anti | pdb_00005b0s | β-1,2-mannobiose phosphorylase | Listeria innocua | β-1,2-mannotriose | Asp141 relay | phosphate | [104] |
| GH133 | none | (α/α)6 | alpha-d | retaining | anti | pdb_00005d0f | glycogen-debranching enzyme | Nakaseomyces glabratus CBS 138 | maltopentaose | Glu564 | Asp535 | [105] |
| GH134 | none | β + α | beta-d | inverting | syn | pdb_00005jug | β-mannanase | Streptomyces sp. | mannopentaose | Glu45 | Asp57 | [106] |
| GH136 | none | β-helix | beta-d | retaining | syn | pdb_00005gqf | lacto-N-biosidase | Bifidobacterium longum | lacto-N-biose | Asp411 | Asp418 | [107] |
| GH137 | none | 5-fold β-propeller | beta-l | unknown | anti | pdb_00005mui | β-l-arabinofuranosidase BT_0996 | Bacteroides thetaiotaomicron | pectin oligosaccharide | Glu240 | Glu159 | [92] |
| GH138 | none | (β/α)8 | alpha-d | retaining | syn | pdb_00006hzg | α-1,2-d-galacturonidase | Bacteroides paurosaccharolyticus | alpha-d-galactopyranuronic | Glu294 | Glu361 | [108] |
| GH140 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH144 | S | (α/α)8 | beta-d | inverting | syn | pdb_00008xul | beta-1,2-glucanase | Xanthomonas campestris | beta-1,2-glucoheptasaccharide | Glu239 | unknown | [109] |
| GH146 | P | (α/α)6 and β-sandwich | beta-l | retaining | anti | pdb_00005opj | β-l-arabinofuranosidase | Bacteroides thetaiotaomicron | l-arabinose | Glu320 | Cys416 | [110] |
| GH147 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH148 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH149 | Q | (α/α)6 | beta-d | inverting | predicted syn by clan | see at GH94 | ||||||
| GH156 | none | (β/α)8 | alpha-d | inverting | syn | pdb_00006s0e | exo-α-sialidase | uncultured bacterium pG7 | N-acetyl-2,3-dehydro-2-deoxyneuraminic acid | His134 (relay from Asp132) | Asp14 | [111] |
| GH157 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH158 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH161 | Q | (α/α)6 | beta-d | retaining | predicted syn by clan | see at GH94 | ||||||
| GH162 | S | (α/α)6 | beta-d | inverting | syn | pdb_00006imw | endo-β-1,2-glucanase | Talaromyces funiculosus | beta-1,2-glucan | Glu262 via C3-OH of glc at subs. +2 | Asp446 | [112] |
| GH164 | A | (β/α)8 | beta-d | retaining | anti | pdb_00006t75 | β-mannosidase | Bacteroides salyersiae | 2-deoxy-2-F-mannosyl | Glu160 | Glu297 | [113] |
| GH167 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH168 | none | (β/α)8 | alpha-l | retaining | syn | pdb_00008ya7 | endo-α-1,3-l-fucanase (Fun168A) | Wenyingzhuangia fucanilytica CZ1127 | sulfated fucotetraose | Glu264 | Asp206 | [114] |
| GH169 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH172 | none | β-jelly roll | alpha-d | retaining | anti | pdb_00007v1w | difructose-anhydride synthase | Bifidobacterium dentum | beta-d-arabinofuranose | Glu270 | Glu291 | [115] |
| GH173 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
| GH178 | L | (α/α)6 | alpha-d | inverting | predicted anti by clan | see at e.g. GH15 | ||||||
| GH181 | E | 6-fold β-propeller | alpha-d | inverting | anti | pdb_00008axi | exo-α-sialidase | Akkermansia muciniphila | 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid + T-antigen disaccharide | Asp345 | Glu218 | [116] |
| GH183 | none | 5-bladed β-propeller | alpha-d | retaining | anti | pdb_00008ic1 | endo-α-1,5-d-arabinofuranosidase | Microbacterium arabinogalactanolyticum JCM 9171 | α-d-Araf-(1,5)-α-d-Araf-(1,5)-α-d-Araf-(1,5)-α-d-Araf | Asp51 | Asp33 | [117] |
| GH186 | none | β-sandwich | beta-d | inverting | syn | pdb_00008ip1 | β-1,2-glucanase | Escherechia coli | β-1,2-glucan | Asp388 | Asp300 + 3 waters | [118] |
| n.c.* | none | parallel β-helix | alpha-d | inverting | anti | pdb_00002vjj | endo-α-N-acetylglucosaminidase | Bacteriophage HK620 | O18A1 O-antigen hexasaccharide | Asp339 | Glu372 | [119] |
* n.c.: Found among the collection of non-classified GH sequences in the CAZy Database.
References
Error fetching PMID 19733839:
Error fetching PMID 26889578:
Error fetching PMID 17002288:
Error fetching PMID 18976664:
Error fetching PMID 21501386:
Error fetching PMID 14756552:
Error fetching PMID 19279191:
Error fetching PMID 24419374:
Error fetching PMID 15364577:
Error fetching PMID 12741813:
Error fetching PMID 23275163:
Error fetching PMID 20592022:
Error fetching PMID 22451675:
Error fetching PMID 23015718:
Error fetching PMID 23012371:
Error fetching PMID 27685756:
Error fetching PMID 20739278:
Error fetching PMID 24766439:
Error fetching PMID 23921382:
Error fetching PMID 15893670:
Error fetching PMID 24297913:
Error fetching PMID 27688023:
Error fetching PMID 24828502:
Error fetching PMID 26494689:
Error fetching PMID 21354427:
Error fetching PMID 37418323:
Error fetching PMID 25772148:
Error fetching PMID 23486481:
Error fetching PMID 26575439:
Error fetching PMID 16565725:
Error fetching PMID 23150581:
Error fetching PMID 20081828:
Error fetching PMID 26041776:
Error fetching PMID 18981178:
Error fetching PMID 19608744:
Error fetching PMID 10684641:
Error fetching PMID 28329766:
Error fetching PMID 30877196:
Error fetching PMID 29255254:
Error fetching PMID 31645552:
Error fetching PMID 28392148:
Error fetching PMID 24582745:
Error fetching PMID 27777307:
Error fetching PMID 26304114:
Error fetching PMID 24339341:
Error fetching PMID 37180965:
Error fetching PMID 30084399:
Error fetching PMID 28026180:
Error fetching PMID 26632508:
Error fetching PMID 27088557:
Error fetching PMID 18547389:
Error fetching PMID 38795894:
Error fetching PMID 32451508:
Error fetching PMID 28546425:
Error fetching PMID 33127644:
Error fetching PMID 37005422:
Error fetching PMID 37726269:
-
Heightman TD and Vasella AT. Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angew Chem Int Ed. 1999 38(6):750-770. Article online.
- Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 |
- Error fetching PMID 23137336:
-
Pérez S and Marchessault RH. The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res. 1978 65:114-120. DOI:10.1016/S0008-6215(00)84218-4
-
Cramer CJ, Truhlar DG, and French AD. Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res. 1997 298:1-14. DOI:10.1016/S0008-6215(96)00297-2
- Error fetching PMID 19733839:
- Error fetching PMID 26889578:
- Error fetching PMID 17002288:
- Error fetching PMID 18976664:
- Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 |
- Rajan SS, Yang X, Collart F, Yip VL, Withers SG, Varrot A, Thompson J, Davies GJ, and Anderson WF. (2004). Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure. 2004;12(9):1619-29. DOI:10.1016/j.str.2004.06.020 |
- Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 |
- Zou Jy, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, and Jones TA. (1999). Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999;7(9):1035-45. DOI:10.1016/s0969-2126(99)80171-3 |
- Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i |
- Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 |
- Error fetching PMID 14756552:
- Error fetching PMID 19279191:
- Error fetching PMID 24419374:
- Error fetching PMID 15364577:
- Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 |
- Error fetching PMID 12741813:
- Harris EM, Aleshin AE, Firsov LM, and Honzatko RB. (1993). Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry. 1993;32(6):1618-26. DOI:10.1021/bi00057a028 |
- Allouch J, Helbert W, Henrissat B, and Czjzek M. (2004). Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure. 2004;12(4):623-32. DOI:10.1016/j.str.2004.02.020 |
- Error fetching PMID 23275163:
- Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, and Petratos K. (2001). High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40(38):11338-43. DOI:10.1021/bi010505h |
- Error fetching PMID 24582745:
- Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, and Oppenheim AB. (2000). Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol. 2000;300(3):611-7. DOI:10.1006/jmbi.2000.3906 |
- Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 |
- Karlsen S, Hough E, Rao ZH, and Isaacs NW. (1996). Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):105-14. DOI:10.1107/S0907444995008468 |
- Baldwin EP, Hajiseyedjavadi O, Baase WA, and Matthews BW. (1993). The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science. 1993;262(5140):1715-8. DOI:10.1126/science.8259514 |
- Cartmell A, Topakas E, Ducros VM, Suits MD, Davies GJ, and Gilbert HJ. (2008). The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283(49):34403-13. DOI:10.1074/jbc.M804053200 |
- Error fetching PMID 20592022:
- Abbott DW and Boraston AB. (2007). The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J Mol Biol. 2007;368(5):1215-22. DOI:10.1016/j.jmb.2007.02.083 |
- Error fetching PMID 22451675:
- Error fetching PMID 21501386:
- Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, and Rose DR. (2008). Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008;375(3):782-92. DOI:10.1016/j.jmb.2007.10.069 |
- Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, and Van den Ende W. (2007). Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol. 2007;174(1):90-100. DOI:10.1111/j.1469-8137.2007.01988.x |
- Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 |
- Error fetching PMID 23015718:
- Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O, and Rouvinen J. (2011). Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site. J Struct Biol. 2011;174(1):156-63. DOI:10.1016/j.jsb.2010.11.024 |
- Error fetching PMID 23012371:
- Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, García A, Chiara JL, and Davies GJ. (2007). Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem Int Ed Engl. 2007;46(22):4115-9. DOI:10.1002/anie.200604825 |
- Shah N, Kuntz DA, and Rose DR. (2008). Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci U S A. 2008;105(28):9570-5. DOI:10.1073/pnas.0802206105 |
- Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, and Shoham Y. (2005). Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. J Mol Biol. 2005;353(4):838-46. DOI:10.1016/j.jmb.2005.09.003 |
- Error fetching PMID 27685756:
- Error fetching PMID 20739278:
- Kitago Y, Karita S, Watanabe N, Kamiya M, Aizawa T, Sakka K, and Tanaka I. (2007). Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem. 2007;282(49):35703-11. DOI:10.1074/jbc.M706835200 |
- Davies GJ, Dodson G, Moore MH, Tolley SP, Dauter Z, Wilson KS, Rasmussen G, and Schülein M. (1996). Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):7-17. DOI:10.1107/S0907444995009280 |
- Error fetching PMID 24766439:
- Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, and Moremen KW. (2005). Mechanism of class 1 (glycosylhydrolase family 47) {alpha}-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem. 2005;280(16):16197-207. DOI:10.1074/jbc.M500119200 |
- Cantú D, Nerinckx W, and Reilly PJ. (2008). Theory and computation show that Asp463 is the catalytic proton donor in human endoplasmic reticulum alpha-(1-->2)-mannosidase I. Carbohydr Res. 2008;343(13):2235-42. DOI:10.1016/j.carres.2008.05.026 |
- Error fetching PMID 23921382:
- Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, and Schomburg D. (2003). Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase. EMBO J. 2003;22(19):4922-32. DOI:10.1093/emboj/cdg494 |
- Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, and Danson MJ. (2014). A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 5):1366-74. DOI:10.1107/S1399004714002788 |
- Le Nours J, De Maria L, Welner D, Jørgensen CT, Christensen LL, Borchert TV, Larsen S, and Lo Leggio L. (2009). Investigating the binding of beta-1,4-galactan to Bacillus licheniformis beta-1,4-galactanase by crystallography and computational modeling. Proteins. 2009;75(4):977-89. DOI:10.1002/prot.22310 |
- Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, and Fushinobu S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem. 2004;279(43):44907-14. DOI:10.1074/jbc.M405390200 |
- Bianchetti CM, Takasuka TE, Deutsch S, Udell HS, Yik EJ, Bergeman LF, and Fox BG. (2015). Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem. 2015;290(19):11819-32. DOI:10.1074/jbc.M114.623579 |
- Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, and Schirmer T. (2000). Crystal structure of hyaluronidase, a major allergen of bee venom. Structure. 2000;8(10):1025-35. DOI:10.1016/s0969-2126(00)00511-6 |
- Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T, and Matsuzawa H. (2003). Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J Biol Chem. 2003;278(21):19378-86. DOI:10.1074/jbc.M213134200 |
- Error fetching PMID 24297913:
- Maehara T, Fujimoto Z, Ichinose H, Michikawa M, Harazono K, and Kaneko S. (2014). Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor. J Biol Chem. 2014;289(11):7962-72. DOI:10.1074/jbc.M113.540542 |
- Error fetching PMID 27688023:
- Error fetching PMID 24828502:
- Error fetching PMID 26494689:
- Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S, Baasov T, Stojanoff V, Thompson A, Shoham Y, and Shoham G. (2004). Crystal structures of Geobacillus stearothermophilus alpha-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem. 2004;279(4):3014-24. DOI:10.1074/jbc.M310098200 |
- Meng G and Fütterer K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol. 2003;10(11):935-41. DOI:10.1038/nsb974 |
- Error fetching PMID 21354427:
- Hurtado-Guerrero R, Schüttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, Latgé JP, and van Aalten DM. (2009). Molecular mechanisms of yeast cell wall glucan remodeling. J Biol Chem. 2009;284(13):8461-9. DOI:10.1074/jbc.M807990200 |
- Error fetching PMID 37418323:
- Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, and Miyazaki K. (2007). The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol. 2007;370(1):53-62. DOI:10.1016/j.jmb.2007.04.035 |
- Error fetching PMID 25772148:
- Barends TR, Bultema JB, Kaper T, van der Maarel MJ, Dijkhuizen L, and Dijkstra BW. (2007). Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase. J Biol Chem. 2007;282(23):17242-9. DOI:10.1074/jbc.M701444200 |
- Error fetching PMID 23486481:
- Error fetching PMID 26575439:
- Pluvinage B, Fillo A, Massel P, and Boraston AB. (2017). Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure. Structure. 2017;25(9):1348-1359.e3. DOI:10.1016/j.str.2017.06.019 |
- Error fetching PMID 15893670:
- Error fetching PMID 16565725:
- Abbott DW, Macauley MS, Vocadlo DJ, and Boraston AB. (2009). Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem. 2009;284(17):11676-89. DOI:10.1074/jbc.M809663200 |
- Error fetching PMID 23150581:
- Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, and Boraston AB. (2008). Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A. 2008;105(18):6560-5. DOI:10.1073/pnas.0711491105 |
- Error fetching PMID 20081828:
- Sogabe Y, Kitatani T, Yamaguchi A, Kinoshita T, Adachi H, Takano K, Inoue T, Mori Y, Matsumura H, Sakamoto T, and Tada T. (2011). High-resolution structure of exo-arabinanase from Penicillium chrysogenum. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 5):415-22. DOI:10.1107/S0907444911006299 |
- Error fetching PMID 26041776:
- Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, and Kato R. (2007). Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282(25):18497-18509. DOI:10.1074/jbc.M702246200 |
- Error fetching PMID 18981178:
- Error fetching PMID 19608744:
- Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, and Davies GJ. (2012). Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proc Natl Acad Sci U S A. 2012;109(3):781-6. DOI:10.1073/pnas.1111482109 |
- Error fetching PMID 27777307:
- Error fetching PMID 26304114:
- van Straaten KE, Barends TR, Dijkstra BW, and Thunnissen AM. (2007). Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage. J Biol Chem. 2007;282(29):21197-205. DOI:10.1074/jbc.M701818200 |
- Error fetching PMID 10684641:
- Error fetching PMID 28329766:
- Error fetching PMID 33127644:
- Error fetching PMID 24339341:
- Error fetching PMID 37180965:
- Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, and Boraston AB. (2012). Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012;287(17):13985-95. DOI:10.1074/jbc.M112.345645 |
- Huang CH, Sun Y, Ko TP, Chen CC, Zheng Y, Chan HC, Pang X, Wiegel J, Shao W, and Guo RT. (2012). The substrate/product-binding modes of a novel GH120 β-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biochem J. 2012;448(3):401-7. DOI:10.1042/BJ20121359 |
- Noach I, Pluvinage B, Laurie C, Abe KT, Alteen MG, Vocadlo DJ, and Boraston AB. (2016). The Details of Glycolipid Glycan Hydrolysis by the Structural Analysis of a Family 123 Glycoside Hydrolase from Clostridium perfringens. J Mol Biol. 2016;428(16):3253-3265. DOI:10.1016/j.jmb.2016.03.020 |
- Error fetching PMID 30084399:
- Error fetching PMID 28026180:
-
Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1). J Bioprocess Biotech. 2014 4:171 DOI:10.4172/2155-9821.1000171
- Error fetching PMID 32451508:
- Error fetching PMID 28546425:
- Error fetching PMID 26632508:
- Error fetching PMID 27088557:
-
Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Cent Sci. 2016 Nov DOI:10.1021/acscentsci.6b00232
- Error fetching PMID 28392148:
- Error fetching PMID 30877196:
-
Nakajima M. et al. Extensive distribution of β-1,2-glucanases: finding of new glycoside hydrolase families of β-1,2-glucanases. BioRxiv preprint 2024. https://doi.org/10.1101/2024.02.06.578578
- Error fetching PMID 29255254:
- Error fetching PMID 31645552:
- Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, and Taguchi H. (2019). Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem. 2019;294(19):7942-7965. DOI:10.1074/jbc.RA118.007087 |
- Armstrong Z and Davies GJ. (2020). Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. J Biol Chem. 2020;295(13):4316-4326. DOI:10.1074/jbc.RA119.011591 |
- Error fetching PMID 38795894:
- Kashima T, Okumura K, Ishiwata A, Kaieda M, Terada T, Arakawa T, Yamada C, Shimizu K, Tanaka K, Kitaoka M, Ito Y, Fujita K, and Fushinobu S. (2021). Identification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family. J Biol Chem. 2021;297(5):101324. DOI:10.1016/j.jbc.2021.101324 |
- Error fetching PMID 37005422:
- Error fetching PMID 37726269:
- Motouchi S, Kobayashi K, Nakai H, and Nakajima M. (2023). Identification of enzymatic functions of osmo-regulated periplasmic glucan biosynthesis proteins from Escherichia coli reveals a novel glycoside hydrolase family. Commun Biol. 2023;6(1):961. DOI:10.1038/s42003-023-05336-6 |
- Error fetching PMID 18547389: