CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Glycoside Hydrolase Family 32"

From CAZypedia
Jump to navigation Jump to search
Line 32: Line 32:
  
 
== Catalytic Residues ==
 
== Catalytic Residues ==
The two invariant residues, responsible for the catalytic reaction in family 32 enzymes, have first been identified experimentally in yeast invertase as an aspartate located close to the N-terminus acting as the nucleophile <cite>3</cite> and a glutamate acting as the [[general acid/base]] <cite>4</cite>.
+
The two invariant residues, responsible for the catalytic reaction in family GH32 enzymes, have first been identified experimentally in yeast invertase as an aspartate located close to the N-terminus acting as the [[catalytic nucleophile]] <cite>3</cite> and a glutamate acting as the [[general acid/base]] <cite>4</cite>.
  
 
== Three-dimensional structures ==
 
== Three-dimensional structures ==
Several three dimensional structures of family 32 enzymes have been solved so far. The first crystal structure was reported for the bacterial &beta;-fructosidase from ''Thermotoga maritima'' <cite>5</cite>. Further crystal structures of enzymes and their substrate-complexes have been solved for two plant enzymes (cell wall invertase <cite>6</cite> and fructan-1-exohydrolase <cite>7</cite> ), as well as one fungal exo-inulinase <cite>7</cite>. The core of the structure consists of a five-bladed &beta;-propeller appended to a &beta;-sandwich, consisting of two sheets of six strands. Although sequence similarity is low, all family 32 invertase are appended to such a sandwich domain. A structural relationship of the catalytic core domain exists to family 68 (also member of [http://www.cazy.org/fam/acc_GH.html#table Clan GH-J]) and family 43. All three enzyme families display a five bladed &beta;-propeller fold.
+
Several three dimensional structures of family GH32 enzymes have been solved so far. The first crystal structure was reported for the bacterial &beta;-fructosidase from ''Thermotoga maritima'' <cite>5</cite>. Further crystal structures of enzymes and their substrate-complexes have been solved for two plant enzymes (cell wall invertase <cite>6</cite> and fructan-1-exohydrolase <cite>7</cite> ), as well as one fungal exo-inulinase <cite>8</cite>. The core of the structure consists of a five-bladed &beta;-propeller appended to a &beta;-sandwich, consisting of two sheets of six &beta;-strands. Although sequence similarity is low within the sandwich modules, all family GH32 invertase are appended to such a module. A structural relationship of the catalytic core module exists to family [[GH68]] (also member of [http://www.cazy.org/fam/acc_GH.html#table Clan GH-J]) and family [[GH43]], as predicted by detailed sequence analysis <cite>8</cite>. All three enzyme families display a five bladed &beta;-propeller fold.
  
 
== Family Firsts ==
 
== Family Firsts ==
;First sterochemistry determination: Cite some reference here, with a ''short'' explanation <cite>1</cite>.
+
;First sterochemistry determination: Saccharomyces cerevisiae invertase <cite>2</cite>.
;First [[catalytic nucleophile]] identification:  
+
;First [[catalytic nucleophile]] identification: Saccharomyces cerevisiae invertase <cite>3</cite>
;First [[general acid/base]] residue identification:  
+
;First [[general acid/base]] residue identification: Saccharomyces cerevisiae invertase <cite>4</cite>
;First 3-D structure:  
+
;First 3-D structure: bacterial &beta;-fructosidase from ''Thermotoga maritima'' by X-ray crystallography  (PDB ID [{{PDBlink}}1uyp 1uyp])  <cite>5</cite>
  
 
== References ==
 
== References ==
Line 50: Line 50:
 
#4 pmid=8662946
 
#4 pmid=8662946
 
#5 pmid=14973124
 
#5 pmid=14973124
#6 pmid=14973124
+
#6 pmid=17139091
#7 pmid=14973124
+
#7 pmid=15659099
 +
#8 pmid=15522299
 +
#9 pmid=11093261
  
 
</biblio>
 
</biblio>
  
 
[[Category:Glycoside Hydrolase Families|GH032]]
 
[[Category:Glycoside Hydrolase Families|GH032]]

Revision as of 05:58, 7 January 2010

Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH32
Clan GH-J
Mechanism retaining
Active site residues known
CAZy DB link
http://www.cazy.org/fam/GH32.html

Substrate specificities

Glycoside hydrolase family GH32 contains one of the earliest described enzyme activities, namely that of 'inverting' sucrose, from which is derived the name of 'invertase' (EC 3.2.1.26), discovered in the second half of the 19th century [1]. Besides the 'historical' invertases, this family also contains enzymes that hydrolyze fructose containing polysaccharides such as inulinases (EC 3.2.1.7) and exo-inulinases (EC 3.2.1.80), levanases (EC 3.2.1.65) and β-2,6-fructan 6-levanbiohydrolases(EC 3.2.1.64), fructan β-(2,1)-fructosidase/1-exohydrolase (EC 3.2.1.153) or fructan β-(2,6)-fructosidase/6-exohydrolases (EC 3.2.1.154), as well as enzymes displaying transglycosylating activites such as sucrose:sucrose 1-fructosyltransferases (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-).

Kinetics and Mechanism

Family 32 enzymes are retaining enzymes, as first shown by Koshland and Stein by performing the reaction in 18O-labeled water and determining the 18O content of the products [2]. The transfructosylation activity (a type of transglycosylation activity) observed for invertase in this reaction indicated that the enzyme operates with a molecular mechanism leading to overall retention of the anomeric configuration [2].

Catalytic Residues

The two invariant residues, responsible for the catalytic reaction in family GH32 enzymes, have first been identified experimentally in yeast invertase as an aspartate located close to the N-terminus acting as the catalytic nucleophile [3] and a glutamate acting as the general acid/base [4].

Three-dimensional structures

Several three dimensional structures of family GH32 enzymes have been solved so far. The first crystal structure was reported for the bacterial β-fructosidase from Thermotoga maritima [5]. Further crystal structures of enzymes and their substrate-complexes have been solved for two plant enzymes (cell wall invertase [6] and fructan-1-exohydrolase [7] ), as well as one fungal exo-inulinase [8]. The core of the structure consists of a five-bladed β-propeller appended to a β-sandwich, consisting of two sheets of six β-strands. Although sequence similarity is low within the sandwich modules, all family GH32 invertase are appended to such a module. A structural relationship of the catalytic core module exists to family GH68 (also member of Clan GH-J) and family GH43, as predicted by detailed sequence analysis [8]. All three enzyme families display a five bladed β-propeller fold.

Family Firsts

First sterochemistry determination
Saccharomyces cerevisiae invertase [2].
First catalytic nucleophile identification
Saccharomyces cerevisiae invertase [3]
First general acid/base residue identification
Saccharomyces cerevisiae invertase [4]
First 3-D structure
bacterial β-fructosidase from Thermotoga maritima by X-ray crystallography (PDB ID 1uyp) [5]

References

  1. O'Sullivan, C., and Tompson, F. W. (1890) J. Chem. Soc. 57, 854-870

    [1]
  2. KOSHLAND DE Jr and STEIN SS. (1954). Correlation of bond breaking with enzyme specificity; cleavage point of invertase. J Biol Chem. 1954;208(1):139-48. | Google Books | Open Library PubMed ID:13174523 [2]
  3. Reddy VA and Maley F. (1990). Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J Biol Chem. 1990;265(19):10817-20. | Google Books | Open Library PubMed ID:2113524 [3]
  4. Reddy A and Maley F. (1996). Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J Biol Chem. 1996;271(24):13953-7. DOI:10.1074/jbc.271.24.13953 | PubMed ID:8662946 [4]
  5. Alberto F, Bignon C, Sulzenbacher G, Henrissat B, and Czjzek M. (2004). The three-dimensional structure of invertase (beta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem. 2004;279(18):18903-10. DOI:10.1074/jbc.M313911200 | PubMed ID:14973124 [5]
  6. Verhaest M, Lammens W, Le Roy K, De Coninck B, De Ranter CJ, Van Laere A, Van den Ende W, and Rabijns A. (2006). X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 12):1555-63. DOI:10.1107/S0907444906044489 | PubMed ID:17139091 [6]
  7. Verhaest M, Van den Ende W, Roy KL, De Ranter CJ, Laere AV, and Rabijns A. (2005). X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J. 2005;41(3):400-11. DOI:10.1111/j.1365-313X.2004.02304.x | PubMed ID:15659099 [7]
  8. Nagem RA, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN, and Polikarpov I. (2004). Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J Mol Biol. 2004;344(2):471-80. DOI:10.1016/j.jmb.2004.09.024 | PubMed ID:15522299 [8]
  9. Naumoff DG (2001). beta-fructosidase superfamily: homology with some alpha-L-arabinases and beta-D-xylosidases. Proteins. 2001;42(1):66-76. DOI:10.1002/1097-0134(20010101)42:1<66::aid-prot70>3.0.co;2-4 | PubMed ID:11093261 [9]

All Medline abstracts: PubMed