CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Syn/anti lateral protonation
This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.
- Author: ^^^Wim Nerinckx^^^
- Responsible Curator: ^^^Spencer Williams^^^
Overview
This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].
Background
The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.
Closer inspection of crystal structures of –1/+1 subsite-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary [2, 3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5, 6, 7]. Anti protonation occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that anti protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).
Syn protonating glycoside hydrolases apparently make use of a different approach [2, 3]. In many –1/+1 subsite-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the syn half-space, allowing it to be protonated by the syn-positioned proton donor (Figure 1 right).
Table of syn/anti protonation examples
This table contains only one example per GH family of a ligand-complexed protein structure where the syn or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.
Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.
Table
This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the View tab at the very top of the page.
Family | Clan | Structure fold | Anomeric specificity | Mechanism | Syn/anti protonator | Example PDB ID | Enzyme | Organism | Ligand | General acid | Nucleophile or General base | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GH1 | A | (β/α)8 | beta-d | retaining | anti | 2cer | β-glycosidase S | Sulfolobus solfataricus P2 | phenethyl glucoimidazole | Glu206 | Glu387 | [8] |
GH2 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | 2vzu | exo-β-glucosaminidase | Amicolatopsis orientalis | PNP-β-d-glucosamine | Glu469 | Glu541 | [9] |
GH3 | none | (β/α)8 | beta-d / alpha-l | retaining | anti | 1iex | exo-1,3-1,4-glucanase | Hordeum vulgare | thiocellobiose | Glu491 | Asp285 | [10] |
GH5 | A | (β/α)8 | beta-d | retaining | anti | 1h2j | endo-β-1,4-glucanase | Bacillus agaradhaerens | 2',4'-DNP-2-F-cellobioside | Glu129 | Glu228 | [11] |
GH6 | none | (β/α)8 | beta-d | inverting | syn | 1qjw | cellobiohydrolase 2 | Hypocrea jecorina | (Glc)2-S-(Glc)2 | Asp221 | debated | [12] |
GH7 | B | β-jelly roll | beta-d | retaining | syn | 1ovw | endo-1,4-glucanase | Fusarium oxysporum | thio-(Glc)5 | Glu202 | Glu197 | [13] |
GH8 | M | (α/α)6 | beta-d | inverting | anti | 1kwf | endo-1,4-glucanase | Clostridium thermocellum | cellopentaose | Glu95 | Asp278 | [14] |
GH9 | none | (α/α)6 | beta-d | inverting | syn | 1rq5 | cellobiohydrolase | Clostridium thermocellum | cellotetraose | Glu795 | Asp383 | [15] |
GH10 | A | (β/α)8 | beta-d | retaining | anti | 2d24 | β-1,4-xylanase | Streptomyces olivaceoviridis E-86 | xylopentaose | Glu128 | Glu236 | [16] |
GH11 | C | β-jelly roll | beta-d | retaining | syn | 4hk8 | endo-β-1,4-xylanase | Hypocrea jecorina | xylohexaose | Glu177 | Glu86 | [17] |
GH12 | C | β-jelly roll | beta-d | retaining | syn | 1w2u | endoglucanase | Humicola grisea | thiocellotetraose | Glu205 | Glu120 | [18] |
GH13 | H | (β/α)8 | alpha-d | retaining | anti | 1cxk | β-cyclodextrin glucanotransferase | Bacillus circulans | maltononaose | Glu257 | Asp229 | [19] |
GH14 | none | (β/α)8 | alpha-d | inverting | syn | 1itc | β-amylase | Bacillus cereus | maltopentaose | Glu172 | Glu367 | [20] |
GH15 | L | (α/α)6 | alpha-d | inverting | anti | 1dog | glucoamylase | Aspergillus awamori | 1-deoxynojirimycin | Glu179 | Glu400 | [21] |
GH16 | B | β-jelly roll | beta-d | retaining | syn | 1urx | β-agarase A | Zobellia galactanivorans | oligoagarose | Glu152 | Glu147 | [22] |
GH17 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see e.g. at GH1 | ||||||
GH18 | K | (β/α)8 | beta-d | retaining | anti | 1ffr | chitinase A | Serratia marcescens | (NAG)6 | Glu315 | internal | [23] |
GH19 | none | lysozyme type | beta-d | inverting | syn | 3wh1 | chitinase | Bryum coronatum | (GlcNAc)4 | Glu61 | Glu70 | [24] |
GH20 | K | (β/α)8 | beta-d | retaining | anti | 1c7s | chitobiase | Serratia marcescens | chitobiose | Glu540 | internal | [25] |
GH22 | none | lysozyme type | beta-d | retaining | syn | 1h6m | lysozyme C | Gallus gallus | Chit-2-F-chitosyl | Glu35 | Asp52 | [26] |
GH23 | none | lysozyme type | beta-d | inverting | syn | 1lsp | lysozyme G | Cygnus atratus | Bulgecin A | Glu73 | internal | [27] |
GH24 | I | α + β | beta-d | inverting | syn | 148l | lysozyme E | Bacteriophage T4 | chitobiosyl | Glu11 | Glu26 | [28] |
GH26 | A | (β/α)8 | beta-d | retaining | anti | 2vx6 | exo-β-mannanase | Cellvibrio japonicus Ueda107 | Gal1Man4 | Glu221 | Glu338 | [29] |
GH27 | D | (β/α)8 | alpha-d / beta-l | retaining | anti | 3lrm | α-galactosidase | Saccharomyces cerevisiae | raffinose | Asp209 | Asp141 | [30] |
GH28 | N | β-helix | alpha-d (and α-l-rham) | inverting | anti | 2uvf | exo-polygalacturonosidase | Yersinia enterocolitica ATCC9610D | digalacturonic acid | Asp402 | Asp381 Asp403 | [31] |
GH29 | R | (β/α)8 | alpha-l | retaining | syn | 3uet | α-1,3/4-fucosidase | Bifidobacterium longum subsp. infantis | lacto-N-fucopentaose II | Glu217 | Asp172 | [32] |
GH30 | A | (β/α)8 | beta-d | retaining | anti | 2y24 | glucurono-xylanase | Dickea chrysanthemi D1 | glucuronoxylan tetrasaccharide | Glu163 | Glu253 | [33] |
GH31 | D | (β/α)8 | alpha-d | retaining | anti | 2qmj | maltase-glucoamylase | Homo sapiens | acarbose | Asp542 | Asp443 | [34] |
GH32 | J | 5-fold β-propeller | beta-d | retaining | anti | 2add | fructan β-(2,1)-fructosidase | Cichorium intybus | sucrose | Glu201 | Asp22 | [35] |
GH33 | E | 6-fold β-propeller | alpha-d | retaining | anti | 1s0i | transsialidase | Trypanosoma cruzi | sialyllactose | Asp59 | Tyr342 | [36] |
GH34 | E | 6-fold β-propeller | alpha-d | retaining | anti | 4gzw | N2 neuraminidase | Influenza A Tanzania/205/2010 H3N2 | α-d-Neup5Ac-(2,3)-β-d-Galp-(1,4)-β-d-GlcpNAc | Asp151 | Tyr406 | [37] |
GH35 | A | (β/α)8 | beta-d | retaining | anti | 3ogv | β-galactosidase | Hypocrea jecorina | 2-phenylethyl 1-thio-β-d-galactopyranoside | Glu200 | Glu298 | [38] |
GH36 | D | (β/α)8 | alpha-d | retaining | anti | 4fns | β-galactosidase | Geobacillus stearothermophilus | 1-deoxy galactonojirimycin | Asp584 | Asp478 | [39] |
GH37 | G | (α/α)6 | alpha-d | inverting | anti | 2jf4 | trehalase | Escherichia coli | validoxylamine | Asp312 | Glu496 | [40] |
GH38 | none | (β/α)7 | alpha-d | retaining | anti | 3czn | Golgi α-mannosidase II | Drosophila melanogaster | GlcNAcMan(5)GlcNAc(2) | Asp341 | Asp204 | [41] |
GH39 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | 2bfg | β-xylosidase | Geobacillus stearothermophilus | 2,5-dinitrophenyl-β-d-xyloside | Glu160 | Glu278 | [42] |
GH42 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | 4ucf | β-galactosidase | Bifidobacterium bifidum | d-galactose | Glu161 | Glu320 | [43] |
GH43 | F | 5-fold β-propeller | beta-d / alpha-l | inverting | anti | 3akh | exo-1,5-α-l-arabinofuranosidase | Streptomyces avermitilis | α-1,5-arabinofuranotriose | Glu196 | Asp220 | [44] |
GH44 | none | (β/α)8 | beta-d | retaining | anti | 2eqd | endoglucanase | Clostridium thermocellum | cellooctaose | Glu186 | Glu359 | [45] |
GH45 | none | 6-stranded β-barrel | beta-d | inverting | syn | 4eng | endo-1,4-glucanase | Humicola insolens | cellohexaose | Asp121 | Asp10 | [46] |
GH46 | I | lysozyme type | beta-d | inverting | syn | 4olt | chitosanase | Microbacterium sp. OU01 | hexa-glucosamine | Glu25 | Asp43 | [47] |
GH47 | none | (α/α)7 | alpha-d | inverting | anti | 1x9d | α-mannosidase I | Homo sapiens | Me-2-S-(α-Man)-2-thio-α-Man | Asp463 | Glu599 | [48], [49] |
GH48 | M | (α/α)6 | beta-d | inverting | predicted anti by clan | see at GH8 | ||||||
GH49 | N | β-helix | alpha-d | inverting | predicted anti by clan | see at GH28 | ||||||
GH50 | A | (β/α)8 | beta-d | retaining | anti | 4bq5 | exo-β-agarase | Saccharophagus degradans | neoagarotetraose | Glu535 | Glu695 | [50] |
GH51 | A | (β/α)8 | beta-d / alpha-l | retaining | anti | 1qw9 | α-l-arabinofuranosidase | Geobacillus stearothermophilus | PNP-l-arabinofuranoside | Glu175 | Glu294 | [51] |
GH52 | O | (α/α)6 | beta-d | retaining | anti | 4c1p | β-xylosidase | Geobacillus thermoglucosidasius | xylobiose | Asp517 | Glu537 | [52] |
GH53 | A | (β/α)8 | beta-d | retaining | anti | 2ccr | β-1,4-galactanase | Bacillus licheniformis | galactotriose | Glu165 | Glu263 | [53] |
GH54 | none | β-sandwich | beta-d / alpha-l | retaining | anti | 1wd4 | α-l-arabinofuranosidase B | Aspergillus kawachii | l-arabinofuranose | Asp297 | Glu221 | [54] |
GH55 | none | β-helix | beta-d | inverting | syn | 4tz5 | exo-β-1,3-glucanase | Streptomyces sp. SirexAA-E | laminarihexaose | Glu502 | unknown | [55] |
GH56 | none | (β/α)7 | beta-d | retaining | anti | 1fcv | hyaluronidase | Apis mellifera | (hyaluron.)4 | Glu113 | internal | [56] |
GH57 | none | (β/α)7 | alpha-d | retaining | anti | 1k1y | glucanotransferase | Thermococcus litoralis | acarbose | Asp214 | Glu123 | [57] |
GH59 | A | (β/α)8 | beta-d | retaining | anti | 4ccc | β-galactocerebrosidase | Mus musculus | PNP-β-d-galactoside | Glu182 | Glu258 | [58] |
GH62 | F | 5-fold β-propeller | alpha-l | inverting | predicted anti by clan | see at GH43 | ||||||
GH63 | G | (α/α)6 | alpha-d | inverting | anti | 5ca3 | α-glucosidase | Escherichia coli | glucose and lactose | Asp501 | Glu727 | [59] |
GH65 | L | (α/α)6 | alpha-d (and α-l-rham) | inverting | anti | 4ktr | 2-O-α-glucosylglycerol phosphorylase | Bacillus selenitireducens | isofagomine | Glu475 | phosphate | [60] |
GH66 | none | (β/α)8 | alpha-d | retaining | anti | 5axh | dextranase | Thermoanaerobacter pseudethanolicus | isomaltohexaose | Glu374 | Asp312 | [61] |
GH67 | none | (β/α)8 | alpha-d | inverting | syn | 1l8n | α-glucuronidase | Geobacillus stearothermophilus | 4-O-methyl-d-glucuronic acid and xylotriose | Glu286 | Asp364 Glu392 | [62] |
GH68 | J | 5-fold β-propeller | beta-d | retaining | anti | 1pt2 | levansucrase | Bacillus subtilis | sucrose | Glu342 | Asp86 | [63] |
GH70 | H | (β/α)8 | alpha-d | retaining | anti | 3aic | glucansucrase | Streptococcus mutans | α-acarbose | Glu515 | Asp477 | [64] |
GH72 | A | (β/α)8 | beta-d | retaining | anti | 2w62 | β-1,3-glucanotransferase | Saccharomyces cerevisiae S288C | laminaripentaose | Glu176 | Glu275 | [65] |
GH74 | none | 7-fold β-propeller | beta-d | inverting | syn | 2ebs | cellobiohydrolase (OXG-RCBH) | Geotrichum sp. m128 | xyloglucan heptasaccharide | Asp465 | Asp35 | [66] |
GH76 | none | (α/α)6 | alpha-d | retaining | anti | 5agd | endo-α-1,6-mannanase | Bacillus circulans | α-1,6-mannopentaose | Asp125 | Asp124 | [67] |
GH77 | H | (β/α)8 | alpha-d | retaining | anti | 2oww | 4-α-glucanotransferase | Thermus thermofilus | acarbose + 4-deoxy-α-d-glucose | Glu340 | Asp293 | [68] |
GH78 | H | (α/α)6 | alpha-l | inverting | anti | 3w5n | α-l-rhamnosidase | Streptomyces avermitilis | l-rhamnose | Glu636 | Glu895 | [69] |
GH79 | A | (β/α)8 | beta-d | retaining | anti | 5e9c | heparanase | Homo sapiens | heparin tetrasaccharide | Glu225 | Glu343 | [70] |
GH80 | I | α + β | beta-d | inverting | predicted syn by clan | see at GH24 | ||||||
GH81 | none | β-sandwich | beta-d | inverting | syn | 5t4g | endo-β-1,3-glucanase | Bacillus halodurans C-125 | laminarin | Asp466 | Glu542 | [71] |
GH83 | E | 6-fold β-propeller | alpha-d | retaining | predicted anti by clan | see e.g. at GH33 | ||||||
GH84 | none | (β/α)8 | beta-d | retaining | anti | 2chn | β-N-acetyl-glucosaminidase | Bacteroides thetaiotaomicron VPI-5482 | NAG-thiazoline | Glu242 | internal | [72] |
GH85 | K | (β/α)8 | beta-d | retaining | anti | 2w92 | endo-β-N-acetyl-glucosaminidase D | Streptococcus pneumoniae TIGR4 | NAG-thiazoline | Glu337 | internal | [73] |
GH86 | A | (β/α)8 | beta-d | retaining | anti | 4aw7 | β-porphyranase | Bacteroides plebeius | porphyran fragment | Glu152 | Glu279 | [74] |
GH89 | none | (β/α)8 | alpha-d | retaining | anti | 2vcb | α-N-acetyl-glucosaminidase | Clostridium perfringens | PUGNAc | Glu483 | Glu601 | [75] |
GH92 | none | (α/α)6 and β-sandwich | alpha-d | inverting | anti | 2ww1 | α-1,2-mannosidase | Bacteroides thetaiotaomicron VPI-5482 | thiomannobioside | Glu533 | Asp644 Asp642 | [76] |
GH93 | E | 6-fold β-propeller | alpha-l | retaining | anti | 3a72 | exo-arabinanase | Penicillium chrysogenum | arabinobiose | Glu246 | Glu174 | [77] |
GH94 | Q | (α/α)6 | beta-d | inverting | syn | 4zli | cellobionic acid phosphorylase | Saccharophagus degradans | 3-O-β-d-glucopyranosyl-α-d-glucopyranuronic acid | Asp472 | phosphate | [78] |
GH95 | none | (α/α)6 | alpha-l | inverting | anti | 2ead | α-1,2-l-fucosidase | Bifidobacterium bifidum | Fuc-α-1,2-Gal | Glu566 | Asn423 Asp766 | [79] |
GH97 | none | (β/α)8 | alpha-d | retaining + inverting | anti | 2zq0 | α-glucosidase | Bacteroides thetaiotaomicron VPI-5482 | acarbose | Glu532 | Glu508 | [80] |
GH98 | none | (β/α)8 and β-sandwich | beta-d | inverting | anti | 2wmg | endo-β-1,4-galactosidase | Streptococcus pneumoniae | A-LewisY pentasaccharide | Glu158 | Asp251 Glu301 | [81] |
GH99 | none | (β/α)8 | alpha-d | retaining | anti | 4ad4 | endo-α-mannosidase | Bacteroides xylanisolvens | glucose-1,3-isofagomine and α-1,2- mannobiose | Glu336 | debated | [82] |
GH100 | none | (α/α)6 core | beta-d | inverting | anti | 5gop | invertase | Anabaena (Nostoc) sp. pcc7120 | sucrose | Asp188 | Glu414 | [83] |
GH102 | none | double-ψ β-barrel | beta-d | retaining | syn | 2pi8 | lytic transglycosylase A | Escherichia coli | chitohexaose | Asp308 | none | [84] |
GH103 | none | lysozyme type | beta-d | retaining | syn | 1d0k | lytic transglycosylase SLT35 | Escherichia coli | murodipeptides | Glu162 | internal | [85] |
GH106 | none | (β/α)8 | alpha-l | inverting | anti | 5mwk | α-l-rhamnosidase BT_0986 | Bacteroides thetaiotaomicron | pectin heptasaccharide | Glu461 | Glu593 or Glu561 | [86] |
GH107 | R | (β/α)8 | alpha-l | retaining | predicted syn by clan | see at GH29 | ||||||
GH113 | A | (β/α)8 | beta-d | retaining | anti | 4cd8 | β-mannanase | Alicyclobacillus acidocaldarius | mannobioimidazole | Glu151 | Glu231 | [87] |
GH116 | O | (α/α)6 and β-sandwich | beta-d | retaining | predicted anti by clan | see at GH52 | ||||||
GH117 | none | 5-fold β-propeller | alpha-l | inverting | anti | 4ak7 | α-1,3-3,6-anhydro-l-galactosidase | Bacteroides plebeius | neoagarobiose | His302 | Asp90 | [88] |
GH120 | none | parallel β-helix and β-sandwich | beta-d | retaining | anti | 3vsv | β-xylosidase XylC | Thermoanaerobacterium saccharolyticum JW/SL-YS485 | d-xylose | Glu405 | Asp382 | [89] |
GH123 | none | (β/α)8 and β-sandwich | beta-d | retaining | anti | 5fr0 | exo-β-N-acetyl-galactosaminidase | Clostridium perfringens | N-difluoroacetyl-d-galactosamine | Glu345 | internal | [90] |
GH125 | L | (α/α)6 | alpha-d | inverting | anti | 5m7y | exo-α-1,6-mannosidase | Clostridium perfringens | 1,6-α-mannotriose | Asp220 | Glu393 | [91] |
GH127 | P | (α/α)6 and β-sandwich | beta-l | retaining | anti | 3wrg | β-l-arabinofuranosidase | Bifidobacterium longum | l-arabinose | Glu322 | Cys417 | [92] |
GH128 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see e.g. at GH1 | ||||||
GH130 | none | 5-fold β-propeller | beta-d | inverting | anti | 5b0s | β-1,2-mannobiose phosphorylase | Listeria innocua | β-1,2-mannotriose | Asp141 relay | phosphate | [93] |
GH134 | none | β + α | beta-d | inverting | syn | 5jug | β-mannanase | Streptomyces sp. | mannopentaose | Glu45 | Asp57 | [94] |
GH136 | none | β-helix | beta-d | retaining | syn | 5gqf | lacto-N-biosidase | Bifidobacterium longum | lacto-N-biose | Asp411 | Asp418 | [95] |
GH137 | none | 5-fold β-propeller | beta-l | unknown | anti | 5mui | β-l-arabinofuranosidase BT_0996 | Bacteroides thetaiotaomicron | pectin oligosaccharide | Glu240 | Glu159 | [86] |
GH146 | P | (α/α)6 and β-sandwich | beta-l | retaining | anti | 5opj | β-l-arabinofuranosidase BT_0349 | Bacteroides thetaiotaomicron | l-arabinose | Glu320 | Cys416 | [96] |
GH147 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
GH148 | A | (β/α)8 | beta-d | retaining | predicted anti by clan | see at e.g. GH1 | ||||||
GH149 | Q | (α/α)6 | beta-d | inverting | predicted syn by clan | see at GH94 | ||||||
n.c.* | none | parallel β-helix | alpha-d | inverting | anti | 2vjj | endo-α-N-acetylglucosaminidase | Bacteriophage HK620 | O18A1 O-antigen hexasaccharide | Asp339 | Glu372 | [97] |
* n.c.: Found among the collection of non-classified GH sequences in the CAZy Database.
References
Error fetching PMID 23137336:
Error fetching PMID 19733839:
Error fetching PMID 26889578:
Error fetching PMID 17002288:
Error fetching PMID 18976664:
Error fetching PMID 12595701:
Error fetching PMID 10200171:
Error fetching PMID 21501386:
Error fetching PMID 11884144:
Error fetching PMID 14756552:
Error fetching PMID 19279191:
Error fetching PMID 24419374:
Error fetching PMID 15364577:
Error fetching PMID 10331869:
Error fetching PMID 12741813:
Error fetching PMID 8431441:
Error fetching PMID 15062085:
Error fetching PMID 11560481:
Error fetching PMID 10884356:
Error fetching PMID 15299731:
Error fetching PMID 8259514:
Error fetching PMID 20592022:
Error fetching PMID 17397864:
Error fetching PMID 18036614:
Error fetching PMID 17335500:
Error fetching PMID 23015718:
Error fetching PMID 23012371:
Error fetching PMID 17455176:
Error fetching PMID 18599462:
Error fetching PMID 16212978:
Error fetching PMID 20739278:
Error fetching PMID 15299721:
Error fetching PMID 24766439:
Error fetching PMID 15713668:
Error fetching PMID 18619586:
Error fetching PMID 23921382:
Error fetching PMID 14517232:
Error fetching PMID 24816105:
Error fetching PMID 19089956:
Error fetching PMID 25752603:
Error fetching PMID 11080624:
Error fetching PMID 24297913:
Error fetching PMID 27688023:
Error fetching PMID 26494689:
Error fetching PMID 14573597:
Error fetching PMID 14517548:
Error fetching PMID 21354427:
Error fetching PMID 19097997:
Error fetching PMID 17498741:
Error fetching PMID 25772148:
Error fetching PMID 17420245:
Error fetching PMID 26575439:
Error fetching PMID 19181667:
Error fetching PMID 20081828:
Error fetching PMID 21543843:
Error fetching PMID 17459873:
Error fetching PMID 18981178:
Error fetching PMID 19608744:
Error fetching PMID 17502382:
Error fetching PMID 10684641:
Error fetching PMID 24582745:
Error fetching PMID 27777307:
Error fetching PMID 24339341:
Error fetching PMID 22992047:
Error fetching PMID 27038508:
Error fetching PMID 28026180:
Error fetching PMID 18547389:
-
Heightman TD and Vasella AT. Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angew Chem Int Ed. 1999 38(6):750-770. Article online.
- Error fetching PMID 15642336:
- Error fetching PMID 23137336:
-
Pérez S and Marchessault RH. The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res. 1978 65:114-120. DOI:10.1016/S0008-6215(00)84218-4
-
Cramer CJ, Truhlar DG, and French AD. Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res. 1997 298:1-14. DOI:10.1016/S0008-6215(96)00297-2
- Error fetching PMID 19733839:
- Error fetching PMID 26889578:
- Error fetching PMID 17002288:
- Error fetching PMID 18976664:
- Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 |
- Error fetching PMID 12595701:
- Zou Jy, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, and Jones TA. (1999). Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999;7(9):1035-45. DOI:10.1016/s0969-2126(99)80171-3 |
- Error fetching PMID 10200171:
- Error fetching PMID 11884144:
- Error fetching PMID 14756552:
- Error fetching PMID 19279191:
- Error fetching PMID 24419374:
- Error fetching PMID 15364577:
- Error fetching PMID 10331869:
- Error fetching PMID 12741813:
- Error fetching PMID 8431441:
- Error fetching PMID 15062085:
- Error fetching PMID 11560481:
- Error fetching PMID 24582745:
- Error fetching PMID 10884356:
- Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 |
- Error fetching PMID 15299731:
- Error fetching PMID 8259514:
- Cartmell A, Topakas E, Ducros VM, Suits MD, Davies GJ, and Gilbert HJ. (2008). The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283(49):34403-13. DOI:10.1074/jbc.M804053200 |
- Error fetching PMID 20592022:
- Error fetching PMID 17397864:
- Sakurama H, Fushinobu S, Hidaka M, Yoshida E, Honda Y, Ashida H, Kitaoka M, Kumagai H, Yamamoto K, and Katayama T. (2012). 1,3-1,4-α-L-fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem. 2012;287(20):16709-19. DOI:10.1074/jbc.M111.333781 |
- Error fetching PMID 21501386:
- Error fetching PMID 18036614:
- Error fetching PMID 17335500:
- Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 |
- Error fetching PMID 23015718:
- Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O, and Rouvinen J. (2011). Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site. J Struct Biol. 2011;174(1):156-63. DOI:10.1016/j.jsb.2010.11.024 |
- Error fetching PMID 23012371:
- Error fetching PMID 17455176:
- Error fetching PMID 18599462:
- Error fetching PMID 16212978:
- Godoy AS, Camilo CM, Kadowaki MA, Muniz HD, Espirito Santo M, Murakami MT, Nascimento AS, and Polikarpov I. (2016). Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose. FEBS J. 2016;283(22):4097-4112. DOI:10.1111/febs.13908 |
- Error fetching PMID 20739278:
- Kitago Y, Karita S, Watanabe N, Kamiya M, Aizawa T, Sakka K, and Tanaka I. (2007). Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem. 2007;282(49):35703-11. DOI:10.1074/jbc.M706835200 |
- Error fetching PMID 15299721:
- Error fetching PMID 24766439:
- Error fetching PMID 15713668:
- Error fetching PMID 18619586:
- Error fetching PMID 23921382:
- Error fetching PMID 14517232:
- Error fetching PMID 24816105:
- Error fetching PMID 19089956:
- Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, and Fushinobu S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem. 2004;279(43):44907-14. DOI:10.1074/jbc.M405390200 |
- Error fetching PMID 25752603:
- Error fetching PMID 11080624:
- Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T, and Matsuzawa H. (2003). Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J Biol Chem. 2003;278(21):19378-86. DOI:10.1074/jbc.M213134200 |
- Error fetching PMID 24297913:
- Error fetching PMID 27688023:
- Touhara KK, Nihira T, Kitaoka M, Nakai H, and Fushinobu S. (2014). Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. J Biol Chem. 2014;289(26):18067-75. DOI:10.1074/jbc.M114.573212 |
- Error fetching PMID 26494689:
- Error fetching PMID 14573597:
- Error fetching PMID 14517548:
- Error fetching PMID 21354427:
- Error fetching PMID 19097997:
- Error fetching PMID 17498741:
- Error fetching PMID 25772148:
- Error fetching PMID 17420245:
- Fujimoto Z, Jackson A, Michikawa M, Maehara T, Momma M, Henrissat B, Gilbert HJ, and Kaneko S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem. 2013;288(17):12376-85. DOI:10.1074/jbc.M113.460097 |
- Error fetching PMID 26575439:
- Pluvinage B, Fillo A, Massel P, and Boraston AB. (2017). Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure. Structure. 2017;25(9):1348-1359.e3. DOI:10.1016/j.str.2017.06.019 |
- Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, and Davies GJ. (2006). Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol. 2006;13(4):365-71. DOI:10.1038/nsmb1079 |
- Error fetching PMID 19181667:
- Hehemann JH, Kelly AG, Pudlo NA, Martens EC, and Boraston AB. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A. 2012;109(48):19786-91. DOI:10.1073/pnas.1211002109 |
- Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, and Boraston AB. (2008). Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A. 2008;105(18):6560-5. DOI:10.1073/pnas.0711491105 |
- Error fetching PMID 20081828:
- Error fetching PMID 21543843:
- Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, and Fushinobu S. (2015). Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. J Biol Chem. 2015;290(30):18281-92. DOI:10.1074/jbc.M115.664664 |
- Error fetching PMID 17459873:
- Error fetching PMID 18981178:
- Error fetching PMID 19608744:
- Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, and Davies GJ. (2012). Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proc Natl Acad Sci U S A. 2012;109(3):781-6. DOI:10.1073/pnas.1111482109 |
- Error fetching PMID 27777307:
- Error fetching PMID 17502382:
- Error fetching PMID 10684641:
- Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, and Gilbert HJ. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544(7648):65-70. DOI:10.1038/nature21725 |
- Error fetching PMID 24339341:
- Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, and Boraston AB. (2012). Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012;287(17):13985-95. DOI:10.1074/jbc.M112.345645 |
- Error fetching PMID 22992047:
- Error fetching PMID 27038508:
- Error fetching PMID 28026180:
-
Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1). J Bioprocess Biotech. 2014 4:171 DOI:10.4172/2155-9821.1000171
- Tsuda T, Nihira T, Chiku K, Suzuki E, Arakawa T, Nishimoto M, Kitaoka M, Nakai H, and Fushinobu S. (2015). Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. FEBS Lett. 2015;589(24 Pt B):3816-21. DOI:10.1016/j.febslet.2015.11.034 |
-
Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Cent Sci. 2016 Nov DOI:10.1021/acscentsci.6b00232
- Yamada C, Gotoh A, Sakanaka M, Hattie M, Stubbs KA, Katayama-Ikegami A, Hirose J, Kurihara S, Arakawa T, Kitaoka M, Okuda S, Katayama T, and Fushinobu S. (2017). Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum. Cell Chem Biol. 2017;24(4):515-524.e5. DOI:10.1016/j.chembiol.2017.03.012 |
- Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, and Gilbert HJ. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018;3(2):210-219. DOI:10.1038/s41564-017-0079-1 |
- Error fetching PMID 18547389: