CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Syn/anti lateral protonation

From CAZypedia
Revision as of 10:02, 26 December 2019 by Wim Nerinckx (talk | contribs) (Histidine proton donors of GH117 and GH156 now with their relay helpers resp. Asp320 and Asp132, as explained in this table's ref92 (Hehemann_2_2012).)
Jump to navigation Jump to search
Approve icon-50px.png

This page has been approved by the Responsible Curator as essentially complete. CAZypedia is a living document, so further improvement of this page is still possible. If you would like to suggest an addition or correction, please contact the page's Responsible Curator directly by e-mail.


Overview

This page provides a table that summarizes the spatial positioning of the catalytic general acid residue in the active sites of glycoside hydrolases, relative to the substrate. The table below updates those found in the seminal paper on this concept by Heightman and Vasella [1], and a following paper by Nerinckx et al. [2].

Background

The "not from above, but from the side" concept of semi-lateral glycosidic oxygen protonation by glycoside hydrolases was introduced by Heightman and Vasella [1]. It was originally only described for beta-equatorial glycoside hydrolases, but appears to be equally applicable to enzymes acting on an alpha-axial glycosidic bond [2]. When dividing subsite -1 into half-spaces by a plane defined by the glycosidic oxygen and C1' and H1' of the –1 glycoside, many ligand-complexed structures reveal that the proton donor is positioned either in the syn half-space (near the ring-oxygen of the –1 glycoside), or in the anti half-space (on the opposite side of the ring-oxygen). Members of the same GH family appear to share a common syn or anti protonator arrangement and further, this specificity appears to be preserved within Clans of families. This page's compilation of subsite -1 occupied complexes shows that about 70% of all GH families are anti protonators.

Closer inspection of crystal structures of –1/+1 subsite-spanning substrates, or substrate-analogue ligands, in complex with enzymes reveals a further intriguing corollary [2, 3]. In substrate-bound complexes with anti protonating GH enzymes, the scissile anomeric bond (often studied using the thio-analogue) shows a dihedral angle φ (O5'-C1'-[O,S]x-Cx) that is in the lowest-energy synclinal (gauche) conformation. The rationale for this is that a minus synclinal dihedral angle φ for an equatorial glycosidic bond, or plus synclinal for an axial glycosidic bond [4], allows for hyperconjugative overlap of the C1'-O5' antibonding orbital with an antiperiplanar-oriented lone pair orbital lobe of the glycosidic oxygen, thereby creating partial double bond character and stabilization of the glycosidic bond by 4–5 kcal/mol; this ground-state stabilizing phenomenon is known as the ‘exo-anomeric effect’ [5, 6, 7]. Anti protonation occurs on the glycosidic oxygen’s antiperiplanar lone pair, thereby removing the stabilizing exo-anomeric effect. This suggests that anti protonation is an enzymic approach for lowering the activation barrier leading to the transition state (Figure 1 centre).

Syn protonating glycoside hydrolases apparently make use of a different approach [2, 3]. In many –1/+1 subsite-spanning ligand complexes, the dihedral angle φ of the scissile anomeric bond has been rotated away from its lowest-energy synclinal position: clockwise to minus-anticlinal or antiperiplanar for beta-equatorial; counterclockwise to plus-anticlinal or antiperiplanar for alpha-axial anomeric bonds. This removes the hyperconjugative overlap and thus also the stabilizing exo-anomeric effect. And because of this rotation, a lone pair of the glycosidic oxygen is directed into the syn half-space, allowing it to be protonated by the syn-positioned proton donor (Figure 1 right).

Figure 1. Newman projections, with the glycosidic oxygen as proximal atom and the anomeric carbon as distal atom, showing anti (centre) versus syn (right) semi-lateral protonation in beta-equatorial (top) and alpha-axial (bottom) glycoside hydrolases. The indicated φ is the dihedral angle for O5'-C1'-O4-C4.

Table of syn/anti protonation examples

This table contains only one example per GH family of a ligand-complexed protein structure where the syn or anti positioning of the proton donor can be clearly observed; other examples may be available on a family-by-family basis. The reader is thus advised to consult the CAZy database for a current, comprehensive list of CAZyme structures. Where available, the selected examples are Michaelis-type complexes with the ligand spanning the -1/+1 subsites, since these have an intact glycosidic or thioglycosidic bond, or are N-analogs of the substrate (e.g. acarbose). In some examples, the proton donor has been mutated (e.g., to the corresponding amide or to an alanine), and in those cases one may wish to look at a superposition of the given PDB example with the structure of the native enzyme. If a Michaelis-type complex is not yet available, the second and third example choices, respectively, are trapped glycosyl-enzyme intermediates and product complexes where subsite -1 is occupied.

Please also be aware that this is a large table with many data. Please contact the page Author or Responsible Curator with corrections.

Table

This table can be re-sorted by clicking on the icons in the header (javascript must be turned on in your browser). To reset the page to be sorted by GH family, click the View tab at the very top of the page.

Family Clan Structure fold Anomeric specificity Mechanism Syn/anti protonator Example PDB ID Enzyme Organism Ligand General acid Nucleophile or General base Reference
GH1 A (β/α)8 beta-d retaining anti 2cer β-glycosidase S Sulfolobus solfataricus P2 phenethyl glucoimidazole Glu206 Glu387 [8]
GH2 A (β/α)8 beta-d / alpha-l retaining anti 2vzu exo-β-glucosaminidase Amicolatopsis orientalis PNP-β-d-glucosamine Glu469 Glu541 [9]
GH3 none (β/α)8 beta-d / alpha-l retaining anti 1iex exo-1,3-1,4-glucanase Hordeum vulgare thiocellobiose Glu491 Asp285 [10]
GH4 none Rossmann + α6/β3 + β3/α4 beta-d retaining anti 1u8x 6-P-α-glucosidase Bacillus subtilis alpha-d-glucose-6-phosphate Asp172 Not applicable [11]
GH5 A (β/α)8 beta-d retaining anti 1h2j endo-β-1,4-glucanase Bacillus agaradhaerens 2',4'-DNP-2-F-cellobioside Glu129 Glu228 [12]
GH6 none (β/α)8 beta-d inverting syn 1qjw cellobiohydrolase 2 Hypocrea jecorina (Glc)2-S-(Glc)2 Asp221 debated [13]
GH7 B β-jelly roll beta-d retaining syn 1ovw endo-1,4-glucanase Fusarium oxysporum thio-(Glc)5 Glu202 Glu197 [14]
GH8 M (α/α)6 beta-d inverting anti 1kwf endo-1,4-glucanase Clostridium thermocellum cellopentaose Glu95 Asp278 [15]
GH9 none (α/α)6 beta-d inverting syn 1rq5 cellobiohydrolase Clostridium thermocellum cellotetraose Glu795 Asp383 [16]
GH10 A (β/α)8 beta-d retaining anti 2d24 β-1,4-xylanase Streptomyces olivaceoviridis E-86 xylopentaose Glu128 Glu236 [17]
GH11 C β-jelly roll beta-d retaining syn 4hk8 endo-β-1,4-xylanase Hypocrea jecorina xylohexaose Glu177 Glu86 [18]
GH12 C β-jelly roll beta-d retaining syn 1w2u endoglucanase Humicola grisea thiocellotetraose Glu205 Glu120 [19]
GH13 H (β/α)8 alpha-d retaining anti 1cxk β-cyclodextrin glucanotransferase Bacillus circulans maltononaose Glu257 Asp229 [20]
GH14 none (β/α)8 alpha-d inverting syn 1itc β-amylase Bacillus cereus maltopentaose Glu172 Glu367 [21]
GH15 L (α/α)6 alpha-d inverting anti 1dog glucoamylase Aspergillus awamori 1-deoxynojirimycin Glu179 Glu400 [22]
GH16 B β-jelly roll beta-d retaining syn 1urx β-agarase A Zobellia galactanivorans oligoagarose Glu152 Glu147 [23]
GH17 A (β/α)8 beta-d retaining anti 4gzj endo-β-1,3-glucanase Solanum tuberosum laminaratriose + laminarabiose Glu118 Glu259 [24]
GH18 K (β/α)8 beta-d retaining anti 1ffr chitinase A Serratia marcescens (NAG)6 Glu315 internal [25]
GH19 none lysozyme type beta-d inverting syn 3wh1 chitinase Bryum coronatum (GlcNAc)4 Glu61 Glu70 [26]
GH20 K (β/α)8 beta-d retaining anti 1c7s chitobiase Serratia marcescens chitobiose Glu540 internal [27]
GH22 none lysozyme type beta-d retaining syn 1h6m lysozyme C Gallus gallus Chit-2-F-chitosyl Glu35 Asp52 [28]
GH23 none lysozyme type beta-d inverting syn 1lsp lysozyme G Cygnus atratus Bulgecin A Glu73 internal [29]
GH24 I α + β beta-d inverting syn 148l lysozyme E Bacteriophage T4 chitobiosyl Glu11 Glu26 [30]
GH26 A (β/α)8 beta-d retaining anti 2vx6 exo-β-mannanase Cellvibrio japonicus Ueda107 Gal1Man4 Glu221 Glu338 [31]
GH27 D (β/α)8 alpha-d / beta-l retaining anti 3lrm α-galactosidase Saccharomyces cerevisiae raffinose Asp209 Asp141 [32]
GH28 N β-helix alpha-d (and α-l-rham) inverting anti 2uvf exo-polygalacturonosidase Yersinia enterocolitica ATCC9610D digalacturonic acid Asp402 Asp381 Asp403 [33]
GH29 R (β/α)8 alpha-l retaining syn 3uet α-1,3/4-fucosidase Bifidobacterium longum subsp. infantis lacto-N-fucopentaose II Glu217 Asp172 [34]
GH30 A (β/α)8 beta-d retaining anti 2y24 glucurono-xylanase Dickea chrysanthemi D1 glucuronoxylan tetrasaccharide Glu163 Glu253 [35]
GH31 D (β/α)8 alpha-d retaining anti 2qmj maltase-glucoamylase Homo sapiens acarbose Asp542 Asp443 [36]
GH32 J 5-fold β-propeller beta-d retaining anti 2add fructan β-(2,1)-fructosidase Cichorium intybus sucrose Glu201 Asp22 [37]
GH33 E 6-fold β-propeller alpha-d retaining anti 1s0i transsialidase Trypanosoma cruzi sialyllactose Asp59 Tyr342 [38]
GH34 E 6-fold β-propeller alpha-d retaining anti 4gzw N2 neuraminidase Influenza A Tanzania/205/2010 H3N2 α-d-Neup5Ac-(2,3)-β-d-Galp-(1,4)-β-d-GlcpNAc Asp151 Tyr406 [39]
GH35 A (β/α)8 beta-d retaining anti 3ogv β-galactosidase Hypocrea jecorina 2-phenylethyl 1-thio-β-d-galactopyranoside Glu200 Glu298 [40]
GH36 D (β/α)8 alpha-d retaining anti 4fnu β-galactosidase Geobacillus stearothermophilus stachyose Asp584 Asp478 [41]
GH37 G (α/α)6 alpha-d inverting anti 2jf4 trehalase Escherichia coli validoxylamine Asp312 Glu496 [42]
GH38 none (β/α)7 alpha-d retaining anti 3czn Golgi α-mannosidase II Drosophila melanogaster GlcNAcMan(5)GlcNAc(2) Asp341 Asp204 [43]
GH39 A (β/α)8 beta-d / alpha-l retaining anti 2bfg β-xylosidase Geobacillus stearothermophilus 2,5-dinitrophenyl-β-d-xyloside Glu160 Glu278 [44]
GH42 A (β/α)8 beta-d / alpha-l retaining anti 4ucf β-galactosidase Bifidobacterium bifidum d-galactose Glu161 Glu320 [45]
GH43 F 5-fold β-propeller beta-d / alpha-l inverting anti 3akh exo-1,5-α-l-arabinofuranosidase Streptomyces avermitilis α-1,5-arabinofuranotriose Glu196 Asp220 [46]
GH44 none (β/α)8 beta-d retaining anti 2eqd endoglucanase Clostridium thermocellum cellooctaose Glu186 Glu359 [47]
GH45 none 6-stranded β-barrel beta-d inverting syn 4eng endo-1,4-glucanase Humicola insolens cellohexaose Asp121 Asp10 [48]
GH46 I lysozyme type beta-d inverting syn 4olt chitosanase Microbacterium sp. OU01 hexa-glucosamine Glu25 Asp43 [49]
GH47 none (α/α)7 alpha-d inverting anti 1x9d α-mannosidase I Homo sapiens Me-2-S-(α-Man)-2-thio-α-Man Asp463 Glu599 [50], [51]
GH48 M (α/α)6 beta-d inverting predicted anti by clan see at GH8
GH49 N β-helix alpha-d inverting predicted anti by clan see at GH28
GH50 A (β/α)8 beta-d retaining anti 4bq5 exo-β-agarase Saccharophagus degradans neoagarotetraose Glu535 Glu695 [52]
GH51 A (β/α)8 beta-d / alpha-l retaining anti 1qw9 α-l-arabinofuranosidase Geobacillus stearothermophilus PNP-l-arabinofuranoside Glu175 Glu294 [53]
GH52 O (α/α)6 beta-d retaining anti 4c1p β-xylosidase Geobacillus thermoglucosidasius xylobiose Asp517 Glu537 [54]
GH53 A (β/α)8 beta-d retaining anti 2ccr β-1,4-galactanase Bacillus licheniformis galactotriose Glu165 Glu263 [55]
GH54 none β-sandwich beta-d / alpha-l retaining anti 1wd4 α-l-arabinofuranosidase B Aspergillus kawachii l-arabinofuranose Asp297 Glu221 [56]
GH55 none β-helix beta-d inverting syn 4tz5 exo-β-1,3-glucanase Streptomyces sp. SirexAA-E laminarihexaose Glu502 unknown [57]
GH56 none (β/α)7 beta-d retaining anti 1fcv hyaluronidase Apis mellifera (hyaluron.)4 Glu113 internal [58]
GH57 none (β/α)7 alpha-d retaining anti 1k1y glucanotransferase Thermococcus litoralis acarbose Asp214 Glu123 [59]
GH59 A (β/α)8 beta-d retaining anti 4ccc β-galactocerebrosidase Mus musculus PNP-β-d-galactoside Glu182 Glu258 [60]
GH62 F 5-fold β-propeller alpha-l inverting anti 3wn0 α-l-arabinofuranosidase Streptomyces coelicolor β-l-Arabinofuranose Glu361 Asp202 [61]
GH63 G (α/α)6 alpha-d inverting anti 5ca3 α-glucosidase Escherichia coli glucose and lactose Asp501 Glu727 [62]
GH65 L (α/α)6 alpha-d (and α-l-rham) inverting anti 4ktr 2-O-α-glucosylglycerol phosphorylase Bacillus selenitireducens isofagomine Glu475 phosphate [63]
GH66 none (β/α)8 alpha-d retaining anti 5axh dextranase Thermoanaerobacter pseudethanolicus isomaltohexaose Glu374 Asp312 [64]
GH67 none (β/α)8 alpha-d inverting syn 1l8n α-glucuronidase Geobacillus stearothermophilus 4-O-methyl-d-glucuronic acid and xylotriose Glu286 Asp364 Glu392 [65]
GH68 J 5-fold β-propeller beta-d retaining anti 1pt2 levansucrase Bacillus subtilis sucrose Glu342 Asp86 [66]
GH70 H (β/α)8 alpha-d retaining anti 3aic glucansucrase Streptococcus mutans α-acarbose Glu515 Asp477 [67]
GH72 A (β/α)8 beta-d retaining anti 2w62 β-1,3-glucanotransferase Saccharomyces cerevisiae S288C laminaripentaose Glu176 Glu275 [68]
GH74 none 7-fold β-propeller beta-d inverting syn 2ebs cellobiohydrolase (OXG-RCBH) Geotrichum sp. m128 xyloglucan heptasaccharide Asp465 Asp35 [69]
GH76 none (α/α)6 alpha-d retaining anti 5agd endo-α-1,6-mannanase Bacillus circulans α-1,6-mannopentaose Asp125 Asp124 [70]
GH77 H (β/α)8 alpha-d retaining anti 2oww 4-α-glucanotransferase Thermus thermofilus acarbose + 4-deoxy-α-d-glucose Glu340 Asp293 [71]
GH78 H (α/α)6 alpha-l inverting anti 3w5n α-l-rhamnosidase Streptomyces avermitilis l-rhamnose Glu636 Glu895 [72]
GH79 A (β/α)8 beta-d retaining anti 5e9c heparanase Homo sapiens heparin tetrasaccharide Glu225 Glu343 [73]
GH80 I α + β beta-d inverting predicted syn by clan see at GH24
GH81 none β-sandwich beta-d inverting syn 5t4g endo-β-1,3-glucanase Bacillus halodurans C-125 laminarin Asp466 Glu542 [74]
GH83 E 6-fold β-propeller alpha-d retaining anti 1z4x hemagglutinin-neuraminidase Simian virus 5 α-2,3-sialyllactose Glu247 relay Tyr523 [75]
GH84 none (β/α)8 beta-d retaining anti 2chn β-N-acetyl-glucosaminidase Bacteroides thetaiotaomicron VPI-5482 NAG-thiazoline Glu242 internal [76]
GH85 K (β/α)8 beta-d retaining anti 2w92 endo-β-N-acetyl-glucosaminidase D Streptococcus pneumoniae TIGR4 NAG-thiazoline Glu337 internal [77]
GH86 A (β/α)8 beta-d retaining anti 4aw7 β-porphyranase Bacteroides plebeius porphyran fragment Glu152 Glu279 [78]
GH89 none (β/α)8 alpha-d retaining anti 2vcb α-N-acetyl-glucosaminidase Clostridium perfringens PUGNAc Glu483 Glu601 [79]
GH92 none (α/α)6 and β-sandwich alpha-d inverting anti 2ww1 α-1,2-mannosidase Bacteroides thetaiotaomicron VPI-5482 thiomannobioside Glu533 Asp644 Asp642 [80]
GH93 E 6-fold β-propeller alpha-l retaining anti 3a72 exo-arabinanase Penicillium chrysogenum arabinobiose Glu246 Glu174 [81]
GH94 Q (α/α)6 beta-d inverting syn 4zli cellobionic acid phosphorylase Saccharophagus degradans 3-O-β-d-glucopyranosyl-α-d-glucopyranuronic acid Asp472 phosphate [82]
GH95 none (α/α)6 alpha-l inverting anti 2ead α-1,2-l-fucosidase Bifidobacterium bifidum Fuc-α-1,2-Gal Glu566 Asn423 Asp766 [83]
GH97 none (β/α)8 alpha-d retaining + inverting anti 2zq0 α-glucosidase Bacteroides thetaiotaomicron VPI-5482 acarbose Glu532 Glu508 [84]
GH98 none (β/α)8 and β-sandwich beta-d inverting anti 2wmg endo-β-1,4-galactosidase Streptococcus pneumoniae A-LewisY pentasaccharide Glu158 Asp251 Glu301 [85]
GH99 none (β/α)8 alpha-d retaining anti 4ad4 endo-α-mannosidase Bacteroides xylanisolvens glucose-1,3-isofagomine and α-1,2- mannobiose Glu336 debated [86]
GH100 none (α/α)6 core beta-d inverting anti 5gop invertase Anabaena (Nostoc) sp. pcc7120 sucrose Asp188 Glu414 [87]
GH102 none double-ψ β-barrel beta-d retaining syn 2pi8 lytic transglycosylase A Escherichia coli chitohexaose Asp308 none [88]
GH103 none lysozyme type beta-d retaining syn 1d0k lytic transglycosylase SLT35 Escherichia coli murodipeptides Glu162 internal [89]
GH106 none (β/α)8 alpha-l inverting anti 5mwk α-l-rhamnosidase BT_0986 Bacteroides thetaiotaomicron pectin heptasaccharide Glu461 Glu593 or Glu561 [90]
GH107 R (β/α)8 alpha-l retaining predicted syn by clan see at GH29
GH113 A (β/α)8 beta-d retaining anti 4cd8 β-mannanase Alicyclobacillus acidocaldarius mannobioimidazole Glu151 Glu231 [91]
GH116 O (α/α)6 and β-sandwich beta-d retaining predicted anti by clan see at GH52
GH117 none 5-fold β-propeller alpha-l inverting anti 4ak7 α-1,3-3,6-anhydro-l-galactosidase Bacteroides plebeius neoagarobiose His302 (relay from Asp320) Asp90 [92]
GH120 none parallel β-helix and β-sandwich beta-d retaining anti 3vsv β-xylosidase XylC Thermoanaerobacterium saccharolyticum JW/SL-YS485 d-xylose Glu405 Asp382 [93]
GH123 none (β/α)8 and β-sandwich beta-d retaining anti 5fr0 exo-β-N-acetyl-galactosaminidase Clostridium perfringens N-difluoroacetyl-d-galactosamine Glu345 internal [94]
GH125 L (α/α)6 alpha-d inverting anti 5m7y exo-α-1,6-mannosidase Clostridium perfringens 1,6-α-mannotriose Asp220 Glu393 [95]
GH127 P (α/α)6 and β-sandwich beta-l retaining anti 3wrg β-l-arabinofuranosidase Bifidobacterium longum l-arabinose Glu322 Cys417 [96]
GH128 A (β/α)8 beta-d retaining predicted anti by clan see e.g. at GH1
GH130 none 5-fold β-propeller beta-d inverting anti 5b0s β-1,2-mannobiose phosphorylase Listeria innocua β-1,2-mannotriose Asp141 relay phosphate [97]
GH134 none β + α beta-d inverting syn 5jug β-mannanase Streptomyces sp. mannopentaose Glu45 Asp57 [98]
GH136 none β-helix beta-d retaining syn 5gqf lacto-N-biosidase Bifidobacterium longum lacto-N-biose Asp411 Asp418 [99]
GH137 none 5-fold β-propeller beta-l unknown anti 5mui β-l-arabinofuranosidase BT_0996 Bacteroides thetaiotaomicron pectin oligosaccharide Glu240 Glu159 [90]
GH138 none (β/α)8 alpha-d retaining syn 6hzg α-1,2-d-galacturonidase Bacteroides paurosaccharolyticus alpha-d-galactopyranuronic Glu294 Glu361 [100]
GH146 P (α/α)6 and β-sandwich beta-l retaining anti 5opj β-l-arabinofuranosidase BT_0349 Bacteroides thetaiotaomicron l-arabinose Glu320 Cys416 [101]
GH147 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH148 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH149 Q (α/α)6 beta-d inverting predicted syn by clan see at GH94
GH156 none (β/α)8 alpha-d inverting syn 6s0e exo-α-sialidase uncultured bacterium pG7 N-acetyl-2,3-dehydro-2-deoxyneuraminic acid His134 (relay from Asp132) Asp14 [102]
GH157 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH158 A (β/α)8 beta-d retaining predicted anti by clan see at e.g. GH1
GH161 Q (α/α)6 beta-d retaining predicted syn by clan see at GH94
GH162 none (α/α)6 beta-d inverting syn 6imw endo-β-1,2-glucanase Talaromyces funiculosus beta-1,2-glucan Glu262 via C3-OH of glc at subs. +2 Asp446 [103]
n.c.* none parallel β-helix alpha-d inverting anti 2vjj endo-α-N-acetylglucosaminidase Bacteriophage HK620 O18A1 O-antigen hexasaccharide Asp339 Glu372 [104]

* n.c.: Found among the collection of non-classified GH sequences in the CAZy Database.

References

  1. Heightman TD and Vasella AT. Recent Insights into Inhibition, Structure, and Mechanism of Configuration-Retaining Glycosidases. Angew Chem Int Ed. 1999 38(6):750-770. Article online.

    [HeightmanVasella1999]
  2. Nerinckx W, Desmet T, Piens K, and Claeyssens M. (2005). An elaboration on the syn-anti proton donor concept of glycoside hydrolases: electrostatic stabilisation of the transition state as a general strategy. FEBS Lett. 2005;579(2):302-12. DOI:10.1016/j.febslet.2004.12.021 | PubMed ID:15642336 [Nerinckx2005]
  3. Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, and Ståhlberg J. (2013). Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J. 2013;280(1):184-98. DOI:10.1111/febs.12060 | PubMed ID:23137336 [Wu2012]
  4. Pérez S and Marchessault RH. The exo-anomeric effect: experimental evidence from crystal structures. Carbohydr res. 1978 65:114-120. DOI:10.1016/S0008-6215(00)84218-4

    [Perez1978]
  5. Cramer CJ, Truhlar DG, and French AD. Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution. Carbohydr res. 1997 298:1-14. DOI:10.1016/S0008-6215(96)00297-2

    [Cramer1997]
  6. Johnson GP, Petersen L, French AD, and Reilly PJ. (2009). Twisting of glycosidic bonds by hydrolases. Carbohydr Res. 2009;344(16):2157-66. DOI:10.1016/j.carres.2009.08.011 | PubMed ID:19733839 [Johnson2009]
  7. Alonso ER, Peña I, Cabezas C, and Alonso JL. (2016). Structural Expression of Exo-Anomeric Effect. J Phys Chem Lett. 2016;7(5):845-50. DOI:10.1021/acs.jpclett.6b00028 | PubMed ID:26889578 [Alonso2016]
  8. Gloster TM, Roberts S, Perugino G, Rossi M, Moracci M, Panday N, Terinek M, Vasella A, and Davies GJ. (2006). Structural, kinetic, and thermodynamic analysis of glucoimidazole-derived glycosidase inhibitors. Biochemistry. 2006;45(39):11879-84. DOI:10.1021/bi060973x | PubMed ID:17002288 [Gloster2006]
  9. van Bueren AL, Ghinet MG, Gregg K, Fleury A, Brzezinski R, and Boraston AB. (2009). The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis. J Mol Biol. 2009;385(1):131-9. DOI:10.1016/j.jmb.2008.10.031 | PubMed ID:18976664 [van_Bueren2009]
  10. Hrmova M, Varghese JN, De Gori R, Smith BJ, Driguez H, and Fincher GB. (2001). Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of a plant beta-D-glucan glucohydrolase. Structure. 2001;9(11):1005-16. DOI:10.1016/s0969-2126(01)00673-6 | PubMed ID:11709165 [Hrmova2001]
  11. Rajan SS, Yang X, Collart F, Yip VL, Withers SG, Varrot A, Thompson J, Davies GJ, and Anderson WF. (2004). Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure. 2004;12(9):1619-29. DOI:10.1016/j.str.2004.06.020 | PubMed ID:15341727 [Rajan2004]
  12. Varrot A and Davies GJ. (2003). Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallogr D Biol Crystallogr. 2003;59(Pt 3):447-52. DOI:10.1107/s0907444902023405 | PubMed ID:12595701 [Varrot2003]
  13. Zou Jy, Kleywegt GJ, Ståhlberg J, Driguez H, Nerinckx W, Claeyssens M, Koivula A, Teeri TT, and Jones TA. (1999). Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from trichoderma reesei. Structure. 1999;7(9):1035-45. DOI:10.1016/s0969-2126(99)80171-3 | PubMed ID:10508787 [Zhou1999]
  14. Sulzenbacher G, Mackenzie LF, Wilson KS, Withers SG, Dupont C, and Davies GJ. (1999). The crystal structure of a 2-fluorocellotriosyl complex of the Streptomyces lividans endoglucanase CelB2 at 1.2 A resolution. Biochemistry. 1999;38(15):4826-33. DOI:10.1021/bi982648i | PubMed ID:10200171 [Sulzenbacher1999]
  15. Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, and Alzari PM. (2002). Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol. 2002;316(5):1061-9. DOI:10.1006/jmbi.2001.5404 | PubMed ID:11884144 [Guerin2002]
  16. Schubot FD, Kataeva IA, Chang J, Shah AK, Ljungdahl LG, Rose JP, and Wang BC. (2004). Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry. 2004;43(5):1163-70. DOI:10.1021/bi030202i | PubMed ID:14756552 [Schubot2004]
  17. Suzuki R, Fujimoto Z, Ito S, Kawahara S, Kaneko S, Taira K, Hasegawa T, and Kuno A. (2009). Crystallographic snapshots of an entire reaction cycle for a retaining xylanase from Streptomyces olivaceoviridis E-86. J Biochem. 2009;146(1):61-70. DOI:10.1093/jb/mvp047 | PubMed ID:19279191 [Suzuki2009]
  18. Wan Q, Zhang Q, Hamilton-Brehm S, Weiss K, Mustyakimov M, Coates L, Langan P, Graham D, and Kovalevsky A. (2014). X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 1):11-23. DOI:10.1107/S1399004713023626 | PubMed ID:24419374 [Wan2014]
  19. Sandgren M, Berglund GI, Shaw A, Ståhlberg J, Kenne L, Desmet T, and Mitchinson C. (2004). Crystal complex structures reveal how substrate is bound in the -4 to the +2 binding sites of Humicola grisea Cel12A. J Mol Biol. 2004;342(5):1505-17. DOI:10.1016/j.jmb.2004.07.098 | PubMed ID:15364577 [Sandgren2004]
  20. Uitdehaag JC, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, and Dijkstra BW. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432-6. DOI:10.1038/8235 | PubMed ID:10331869 [Uitdehaag1999]
  21. Miyake H, Kurisu G, Kusunoki M, Nishimura S, Kitamura S, and Nitta Y. (2003). Crystal structure of a catalytic site mutant of beta-amylase from Bacillus cereus var. mycoides cocrystallized with maltopentaose. Biochemistry. 2003;42(19):5574-81. DOI:10.1021/bi020712x | PubMed ID:12741813 [Miyake2003]
  22. Harris EM, Aleshin AE, Firsov LM, and Honzatko RB. (1993). Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Biochemistry. 1993;32(6):1618-26. DOI:10.1021/bi00057a028 | PubMed ID:8431441 [Harris1993]
  23. Allouch J, Helbert W, Henrissat B, and Czjzek M. (2004). Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure. 2004;12(4):623-32. DOI:10.1016/j.str.2004.02.020 | PubMed ID:15062085 [Allouch2004]
  24. Wojtkowiak A, Witek K, Hennig J, and Jaskolski M. (2013). Structures of an active-site mutant of a plant 1,3-β-glucanase in complex with oligosaccharide products of hydrolysis. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 1):52-62. DOI:10.1107/S0907444912042175 | PubMed ID:23275163 [Wojtkowiak2013]
  25. Papanikolau Y, Prag G, Tavlas G, Vorgias CE, Oppenheim AB, and Petratos K. (2001). High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40(38):11338-43. DOI:10.1021/bi010505h | PubMed ID:11560481 [Papanikolau2001]
  26. Ohnuma T, Umemoto N, Nagata T, Shinya S, Numata T, Taira T, and Fukamizo T. (2014). Crystal structure of a "loopless" GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center. Biochim Biophys Acta. 2014;1844(4):793-802. DOI:10.1016/j.bbapap.2014.02.013 | PubMed ID:24582745 [Ohnuma2014]
  27. Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, and Oppenheim AB. (2000). Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol. 2000;300(3):611-7. DOI:10.1006/jmbi.2000.3906 | PubMed ID:10884356 [Prag2000]
  28. Vocadlo DJ, Davies GJ, Laine R, and Withers SG. (2001). Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001;412(6849):835-8. DOI:10.1038/35090602 | PubMed ID:11518970 [Vocadlo2001]
  29. Karlsen S, Hough E, Rao ZH, and Isaacs NW. (1996). Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):105-14. DOI:10.1107/S0907444995008468 | PubMed ID:15299731 [Karlsen1996]
  30. Baldwin EP, Hajiseyedjavadi O, Baase WA, and Matthews BW. (1993). The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science. 1993;262(5140):1715-8. DOI:10.1126/science.8259514 | PubMed ID:8259514 [Baldwin1993]
  31. Cartmell A, Topakas E, Ducros VM, Suits MD, Davies GJ, and Gilbert HJ. (2008). The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem. 2008;283(49):34403-13. DOI:10.1074/jbc.M804053200 | PubMed ID:18799462 [Cartmell2008]
  32. Fernández-Leiro R, Pereira-Rodríguez A, Cerdán ME, Becerra M, and Sanz-Aparicio J. (2010). Structural analysis of Saccharomyces cerevisiae alpha-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases. J Biol Chem. 2010;285(36):28020-33. DOI:10.1074/jbc.M110.144584 | PubMed ID:20592022 [Fernandez-Leiro2010]
  33. Abbott DW and Boraston AB. (2007). The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. J Mol Biol. 2007;368(5):1215-22. DOI:10.1016/j.jmb.2007.02.083 | PubMed ID:17397864 [Abbott2007]
  34. Sakurama H, Fushinobu S, Hidaka M, Yoshida E, Honda Y, Ashida H, Kitaoka M, Kumagai H, Yamamoto K, and Katayama T. (2012). 1,3-1,4-α-L-fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem. 2012;287(20):16709-19. DOI:10.1074/jbc.M111.333781 | PubMed ID:22451675 [Sakurama2012]
  35. Urbániková L, Vršanská M, Mørkeberg Krogh KB, Hoff T, and Biely P. (2011). Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. FEBS J. 2011;278(12):2105-16. DOI:10.1111/j.1742-4658.2011.08127.x | PubMed ID:21501386 [Urbanikova2011]
  36. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, and Rose DR. (2008). Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol. 2008;375(3):782-92. DOI:10.1016/j.jmb.2007.10.069 | PubMed ID:18036614 [Sim2008]
  37. Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, and Van den Ende W. (2007). Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol. 2007;174(1):90-100. DOI:10.1111/j.1469-8137.2007.01988.x | PubMed ID:17335500 [Verhaest2007]
  38. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, and Alzari PM. (2004). Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure. 2004;12(5):775-84. DOI:10.1016/j.str.2004.02.036 | PubMed ID:15130470 [Amaya2004]
  39. Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, and Wilson IA. (2012). Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors. J Virol. 2012;86(24):13371-83. DOI:10.1128/JVI.01426-12 | PubMed ID:23015718 [Zhu2012]
  40. Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O, and Rouvinen J. (2011). Crystal structures of Trichoderma reesei β-galactosidase reveal conformational changes in the active site. J Struct Biol. 2011;174(1):156-63. DOI:10.1016/j.jsb.2010.11.024 | PubMed ID:21130883 [Maksimainen2011]
  41. Merceron R, Foucault M, Haser R, Mattes R, Watzlawick H, and Gouet P. (2012). The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by x-ray crystallography and mutational studies. J Biol Chem. 2012;287(47):39642-52. DOI:10.1074/jbc.M112.394114 | PubMed ID:23012371 [Merceron2012]
  42. Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, García A, Chiara JL, and Davies GJ. (2007). Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem Int Ed Engl. 2007;46(22):4115-9. DOI:10.1002/anie.200604825 | PubMed ID:17455176 [Gibson2007]
  43. Shah N, Kuntz DA, and Rose DR. (2008). Golgi alpha-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc Natl Acad Sci U S A. 2008;105(28):9570-5. DOI:10.1073/pnas.0802206105 | PubMed ID:18599462 [Shah2008]
  44. Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, and Shoham Y. (2005). Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. J Mol Biol. 2005;353(4):838-46. DOI:10.1016/j.jmb.2005.09.003 | PubMed ID:16212978 [Czjzek2005]
  45. Godoy AS, Camilo CM, Kadowaki MA, Muniz HD, Espirito Santo M, Murakami MT, Nascimento AS, and Polikarpov I. (2016). Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose. FEBS J. 2016;283(22):4097-4112. DOI:10.1111/febs.13908 | PubMed ID:27685756 [Godoy2016]
  46. Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, and Kaneko S. (2010). Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. J Biol Chem. 2010;285(44):34134-43. DOI:10.1074/jbc.M110.164251 | PubMed ID:20739278 [Fujimoto2010]
  47. Kitago Y, Karita S, Watanabe N, Kamiya M, Aizawa T, Sakka K, and Tanaka I. (2007). Crystal structure of Cel44A, a glycoside hydrolase family 44 endoglucanase from Clostridium thermocellum. J Biol Chem. 2007;282(49):35703-11. DOI:10.1074/jbc.M706835200 | PubMed ID:17905739 [Kitago2007]
  48. Davies GJ, Dodson G, Moore MH, Tolley SP, Dauter Z, Wilson KS, Rasmussen G, and Schülein M. (1996). Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 A resolution. Acta Crystallogr D Biol Crystallogr. 1996;52(Pt 1):7-17. DOI:10.1107/S0907444995009280 | PubMed ID:15299721 [Davies1996]
  49. Lyu Q, Wang S, Xu W, Han B, Liu W, Jones DN, and Liu W. (2014). Structural insights into the substrate-binding mechanism for a novel chitosanase. Biochem J. 2014;461(2):335-45. DOI:10.1042/BJ20140159 | PubMed ID:24766439 [Lyu2014]
  50. Karaveg K, Siriwardena A, Tempel W, Liu ZJ, Glushka J, Wang BC, and Moremen KW. (2005). Mechanism of class 1 (glycosylhydrolase family 47) {alpha}-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem. 2005;280(16):16197-207. DOI:10.1074/jbc.M500119200 | PubMed ID:15713668 [Karaveg2005]
  51. Cantú D, Nerinckx W, and Reilly PJ. (2008). Theory and computation show that Asp463 is the catalytic proton donor in human endoplasmic reticulum alpha-(1-->2)-mannosidase I. Carbohydr Res. 2008;343(13):2235-42. DOI:10.1016/j.carres.2008.05.026 | PubMed ID:18619586 [Nerinckx2008]
  52. Pluvinage B, Hehemann JH, and Boraston AB. (2013). Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. J Biol Chem. 2013;288(39):28078-88. DOI:10.1074/jbc.M113.491068 | PubMed ID:23921382 [Pluvinage2013]
  53. Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, and Schomburg D. (2003). Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase. EMBO J. 2003;22(19):4922-32. DOI:10.1093/emboj/cdg494 | PubMed ID:14517232 [Hoevel2003]
  54. Espina G, Eley K, Pompidor G, Schneider TR, Crennell SJ, and Danson MJ. (2014). A novel β-xylosidase structure from Geobacillus thermoglucosidasius: the first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt 5):1366-74. DOI:10.1107/S1399004714002788 | PubMed ID:24816105 [Espina2014]
  55. Le Nours J, De Maria L, Welner D, Jørgensen CT, Christensen LL, Borchert TV, Larsen S, and Lo Leggio L. (2009). Investigating the binding of beta-1,4-galactan to Bacillus licheniformis beta-1,4-galactanase by crystallography and computational modeling. Proteins. 2009;75(4):977-89. DOI:10.1002/prot.22310 | PubMed ID:19089956 [Le_Nours2009]
  56. Miyanaga A, Koseki T, Matsuzawa H, Wakagi T, Shoun H, and Fushinobu S. (2004). Crystal structure of a family 54 alpha-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J Biol Chem. 2004;279(43):44907-14. DOI:10.1074/jbc.M405390200 | PubMed ID:15292273 [Miyanaga2004]
  57. Bianchetti CM, Takasuka TE, Deutsch S, Udell HS, Yik EJ, Bergeman LF, and Fox BG. (2015). Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem. 2015;290(19):11819-32. DOI:10.1074/jbc.M114.623579 | PubMed ID:25752603 [Bianchetti2015]
  58. Marković-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, and Schirmer T. (2000). Crystal structure of hyaluronidase, a major allergen of bee venom. Structure. 2000;8(10):1025-35. DOI:10.1016/s0969-2126(00)00511-6 | PubMed ID:11080624 [Markovic-Housley2000]
  59. Imamura H, Fushinobu S, Yamamoto M, Kumasaka T, Jeon BS, Wakagi T, and Matsuzawa H. (2003). Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor. J Biol Chem. 2003;278(21):19378-86. DOI:10.1074/jbc.M213134200 | PubMed ID:12618437 [Imamura2003]
  60. Hill CH, Graham SC, Read RJ, and Deane JE. (2013). Structural snapshots illustrate the catalytic cycle of β-galactocerebrosidase, the defective enzyme in Krabbe disease. Proc Natl Acad Sci U S A. 2013;110(51):20479-84. DOI:10.1073/pnas.1311990110 | PubMed ID:24297913 [Hill2013]
  61. Maehara T, Fujimoto Z, Ichinose H, Michikawa M, Harazono K, and Kaneko S. (2014). Crystal structure and characterization of the glycoside hydrolase family 62 α-L-arabinofuranosidase from Streptomyces coelicolor. J Biol Chem. 2014;289(11):7962-72. DOI:10.1074/jbc.M113.540542 | PubMed ID:24482228 [Maehara2014]
  62. Miyazaki T, Nishikawa A, and Tonozuka T. (2016). Crystal structure of the enzyme-product complex reveals sugar ring distortion during catalysis by family 63 inverting α-glycosidase. J Struct Biol. 2016;196(3):479-486. DOI:10.1016/j.jsb.2016.09.015 | PubMed ID:27688023 [Miyazaki2016]
  63. Touhara KK, Nihira T, Kitaoka M, Nakai H, and Fushinobu S. (2014). Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. J Biol Chem. 2014;289(26):18067-75. DOI:10.1074/jbc.M114.573212 | PubMed ID:24828502 [Touhara2014]
  64. Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, Nam SH, Kimura A, and Kim YM. (2016). Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem. 2016;159(3):331-9. DOI:10.1093/jb/mvv104 | PubMed ID:26494689 [Suzuki2016]
  65. Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S, Baasov T, Stojanoff V, Thompson A, Shoham Y, and Shoham G. (2004). Crystal structures of Geobacillus stearothermophilus alpha-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem. 2004;279(4):3014-24. DOI:10.1074/jbc.M310098200 | PubMed ID:14573597 [Golan2004]
  66. Meng G and Fütterer K. (2003). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol. 2003;10(11):935-41. DOI:10.1038/nsb974 | PubMed ID:14517548 [Meng2003]
  67. Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, and Iwata S. (2011). Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Mol Biol. 2011;408(2):177-86. DOI:10.1016/j.jmb.2011.02.028 | PubMed ID:21354427 [Ito2011]
  68. Hurtado-Guerrero R, Schüttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, Latgé JP, and van Aalten DM. (2009). Molecular mechanisms of yeast cell wall glucan remodeling. J Biol Chem. 2009;284(13):8461-9. DOI:10.1074/jbc.M807990200 | PubMed ID:19097997 [Hurtado-Gerrero2009]
  69. Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, and Miyazaki K. (2007). The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol. 2007;370(1):53-62. DOI:10.1016/j.jmb.2007.04.035 | PubMed ID:17498741 [Yaoi2007]
  70. Thompson AJ, Speciale G, Iglesias-Fernández J, Hakki Z, Belz T, Cartmell A, Spears RJ, Chandler E, Temple MJ, Stepper J, Gilbert HJ, Rovira C, Williams SJ, and Davies GJ. (2015). Evidence for a boat conformation at the transition state of GH76 α-1,6-mannanases--key enzymes in bacterial and fungal mannoprotein metabolism. Angew Chem Int Ed Engl. 2015;54(18):5378-82. DOI:10.1002/anie.201410502 | PubMed ID:25772148 [Thompson2015]
  71. Barends TR, Bultema JB, Kaper T, van der Maarel MJ, Dijkhuizen L, and Dijkstra BW. (2007). Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase. J Biol Chem. 2007;282(23):17242-9. DOI:10.1074/jbc.M701444200 | PubMed ID:17420245 [Barends2007]
  72. Fujimoto Z, Jackson A, Michikawa M, Maehara T, Momma M, Henrissat B, Gilbert HJ, and Kaneko S. (2013). The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem. 2013;288(17):12376-85. DOI:10.1074/jbc.M113.460097 | PubMed ID:23486481 [Fujimoto2013]
  73. Wu L, Viola CM, Brzozowski AM, and Davies GJ. (2015). Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol. 2015;22(12):1016-22. DOI:10.1038/nsmb.3136 | PubMed ID:26575439 [Wu2015]
  74. Pluvinage B, Fillo A, Massel P, and Boraston AB. (2017). Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure. Structure. 2017;25(9):1348-1359.e3. DOI:10.1016/j.str.2017.06.019 | PubMed ID:28781080 [Pluvinage2017]
  75. Yuan P, Thompson TB, Wurzburg BA, Paterson RG, Lamb RA, and Jardetzky TS. (2005). Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure. 2005;13(5):803-15. DOI:10.1016/j.str.2005.02.019 | PubMed ID:15893670 [Yuan2005]
  76. Dennis RJ, Taylor EJ, Macauley MS, Stubbs KA, Turkenburg JP, Hart SJ, Black GN, Vocadlo DJ, and Davies GJ. (2006). Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol. 2006;13(4):365-71. DOI:10.1038/nsmb1079 | PubMed ID:16565725 [Dennis2006]
  77. Abbott DW, Macauley MS, Vocadlo DJ, and Boraston AB. (2009). Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem. 2009;284(17):11676-89. DOI:10.1074/jbc.M809663200 | PubMed ID:19181667 [Abbott2009]
  78. Hehemann JH, Kelly AG, Pudlo NA, Martens EC, and Boraston AB. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A. 2012;109(48):19786-91. DOI:10.1073/pnas.1211002109 | PubMed ID:23150581 [Hehemann_1_2012]
  79. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, and Boraston AB. (2008). Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Proc Natl Acad Sci U S A. 2008;105(18):6560-5. DOI:10.1073/pnas.0711491105 | PubMed ID:18443291 [Ficko-Blean2008]
  80. Zhu Y, Suits MD, Thompson AJ, Chavan S, Dinev Z, Dumon C, Smith N, Moremen KW, Xiang Y, Siriwardena A, Williams SJ, Gilbert HJ, and Davies GJ. (2010). Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol. 2010;6(2):125-32. DOI:10.1038/nchembio.278 | PubMed ID:20081828 [Zhu2009]
  81. Sogabe Y, Kitatani T, Yamaguchi A, Kinoshita T, Adachi H, Takano K, Inoue T, Mori Y, Matsumura H, Sakamoto T, and Tada T. (2011). High-resolution structure of exo-arabinanase from Penicillium chrysogenum. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 5):415-22. DOI:10.1107/S0907444911006299 | PubMed ID:21543843 [Sogabe2011]
  82. Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H, and Fushinobu S. (2015). Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes. J Biol Chem. 2015;290(30):18281-92. DOI:10.1074/jbc.M115.664664 | PubMed ID:26041776 [Nam2015]
  83. Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, and Kato R. (2007). Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282(25):18497-18509. DOI:10.1074/jbc.M702246200 | PubMed ID:17459873 [Nagae2007]
  84. Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, and Yao M. (2008). Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J Biol Chem. 2008;283(52):36328-37. DOI:10.1074/jbc.M806115200 | PubMed ID:18981178 [Kitamura2008]
  85. Higgins MA, Whitworth GE, El Warry N, Randriantsoa M, Samain E, Burke RD, Vocadlo DJ, and Boraston AB. (2009). Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases. J Biol Chem. 2009;284(38):26161-73. DOI:10.1074/jbc.M109.024067 | PubMed ID:19608744 [Higgins2009]
  86. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, and Davies GJ. (2012). Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proc Natl Acad Sci U S A. 2012;109(3):781-6. DOI:10.1073/pnas.1111482109 | PubMed ID:22219371 [Thompson2012]
  87. Xie J, Cai K, Hu HX, Jiang YL, Yang F, Hu PF, Cao DD, Li WF, Chen Y, and Zhou CZ. (2016). Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase. J Biol Chem. 2016;291(49):25667-25677. DOI:10.1074/jbc.M116.759290 | PubMed ID:27777307 [Xie2016]
  88. van Straaten KE, Barends TR, Dijkstra BW, and Thunnissen AM. (2007). Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage. J Biol Chem. 2007;282(29):21197-205. DOI:10.1074/jbc.M701818200 | PubMed ID:17502382 [van_Straaten2007]
  89. van Asselt EJ, Kalk KH, and Dijkstra BW. (2000). Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry. 2000;39(8):1924-34. DOI:10.1021/bi992161p | PubMed ID:10684641 [van_Asselt2000]
  90. Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, and Gilbert HJ. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature. 2017;544(7648):65-70. DOI:10.1038/nature21725 | PubMed ID:28329766 [Ndeh2017]
  91. Williams RJ, Iglesias-Fernández J, Stepper J, Jackson A, Thompson AJ, Lowe EC, White JM, Gilbert HJ, Rovira C, Davies GJ, and Williams SJ. (2014). Combined inhibitor free-energy landscape and structural analysis reports on the mannosidase conformational coordinate. Angew Chem Int Ed Engl. 2014;53(4):1087-91. DOI:10.1002/anie.201308334 | PubMed ID:24339341 [Williams2014]
  92. Hehemann JH, Smyth L, Yadav A, Vocadlo DJ, and Boraston AB. (2012). Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds. J Biol Chem. 2012;287(17):13985-95. DOI:10.1074/jbc.M112.345645 | PubMed ID:22393053 [Hehemann_2_2012]
  93. Huang CH, Sun Y, Ko TP, Chen CC, Zheng Y, Chan HC, Pang X, Wiegel J, Shao W, and Guo RT. (2012). The substrate/product-binding modes of a novel GH120 β-xylosidase (XylC) from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biochem J. 2012;448(3):401-7. DOI:10.1042/BJ20121359 | PubMed ID:22992047 [Huang2012]
  94. Noach I, Pluvinage B, Laurie C, Abe KT, Alteen MG, Vocadlo DJ, and Boraston AB. (2016). The Details of Glycolipid Glycan Hydrolysis by the Structural Analysis of a Family 123 Glycoside Hydrolase from Clostridium perfringens. J Mol Biol. 2016;428(16):3253-3265. DOI:10.1016/j.jmb.2016.03.020 | PubMed ID:27038508 [Noach2016]
  95. Alonso-Gil S, Males A, Fernandes PZ, Williams SJ, Davies GJ, and Rovira C. (2017). Computational Design of Experiment Unveils the Conformational Reaction Coordinate of GH125 α-Mannosidases. J Am Chem Soc. 2017;139(3):1085-1088. DOI:10.1021/jacs.6b11247 | PubMed ID:28026180 [Alonso-Gil2016]
  96. Huang CH, Zhu Z, Cheng YS, Chan HC, Ko TP, Chen CC, Wang I, Ho MR, Hsu ST, Zeng YF, Huang YN, Liu JR, Guo RT. Structure and Catalytic Mechanism of a Glycoside Hydrolase Family-127 β-L-Arabinofuranosidase (HypBA1). J Bioprocess Biotech. 2014 4:171 DOI:10.4172/2155-9821.1000171

    [Huang2014]
  97. Tsuda T, Nihira T, Chiku K, Suzuki E, Arakawa T, Nishimoto M, Kitaoka M, Nakai H, and Fushinobu S. (2015). Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua. FEBS Lett. 2015;589(24 Pt B):3816-21. DOI:10.1016/j.febslet.2015.11.034 | PubMed ID:26632508 [Tsuda2015]
  98. Jin Y, Petricevic M, John A, Raich L, Jenkins H, Portela De Souza L, Cuskin F, Gilbert HJ, Rovira C, Goddard-Borger ED, Williams SJ, and Davies GJ. A β-Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Cent Sci. 2016 Nov DOI:10.1021/acscentsci.6b00232

    [Jin2016]
  99. Yamada C, Gotoh A, Sakanaka M, Hattie M, Stubbs KA, Katayama-Ikegami A, Hirose J, Kurihara S, Arakawa T, Kitaoka M, Okuda S, Katayama T, and Fushinobu S. (2017). Molecular Insight into Evolution of Symbiosis between Breast-Fed Infants and a Member of the Human Gut Microbiome Bifidobacterium longum. Cell Chem Biol. 2017;24(4):515-524.e5. DOI:10.1016/j.chembiol.2017.03.012 | PubMed ID:28392148 [Yamada2017]
  100. Labourel A, Baslé A, Munoz-Munoz J, Ndeh D, Booth S, Nepogodiev SA, Field RA, and Cartmell A. (2019). Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II. J Biol Chem. 2019;294(19):7711-7721. DOI:10.1074/jbc.RA118.006626 | PubMed ID:30877196 [Labourel2019]
  101. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, and Gilbert HJ. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol. 2018;3(2):210-219. DOI:10.1038/s41564-017-0079-1 | PubMed ID:29255254 [Luis2018]
  102. Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, and Davies GJ. (2019). Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun. 2019;10(1):4816. DOI:10.1038/s41467-019-12684-7 | PubMed ID:31645552 [Bule2019]
  103. Tanaka N, Nakajima M, Narukawa-Nara M, Matsunaga H, Kamisuki S, Aramasa H, Takahashi Y, Sugimoto N, Abe K, Terada T, Miyanaga A, Yamashita T, Sugawara F, Kamakura T, Komba S, Nakai H, and Taguchi H. (2019). Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family. J Biol Chem. 2019;294(19):7942-7965. DOI:10.1074/jbc.RA118.007087 | PubMed ID:30926603 [Tanaka2019]
  104. Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, and Seckler R. (2008). Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol. 2008;69(2):303-16. DOI:10.1111/j.1365-2958.2008.06311.x | PubMed ID:18547389 [Barbirz2008]

All Medline abstracts: PubMed