CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Glycoside Hydrolase Family 50

From CAZypedia
Jump to navigation Jump to search
Under construction icon-blue-48px.png

This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.


Glycoside Hydrolase Family GH50
Clan GH-A
Mechanism probably retaining
Active site residues inferred from clan GH-A as two Glu
CAZy DB link
https://www.cazy.org/GH50.html


Substrate specificities

To date, all characterized glycoside hydrolases of family 50 are β-agarases (EC 3.2.1.81) that cleave β-1,4 glycosidic bonds of agarose, releasing neoagaro-biose -tetraose and -hexaose [1, 2, 3]. Three enzymes, Aga50A and Aga50D from Saccharophagus degradans and Aga50B from Vibrio sp. have been reported to be pure exo-β-agarases [4].


Kinetics and Mechanism

Actually, the potentially retaining mechanism of this glycoside hydrolase familly can only be inferred from analogy to clan GH-A enzymes https://www.cazy.org/GH50.html. No mechanistic or kintetic analysis demonstrating the stereochemical outcome of the reaction have been reported for this family to date.


Catalytic Residues

Content is to be added here.


Three-dimensional structures

Content is to be added here.


Family Firsts

First stereochemistry determination
Cite some reference here, with a short (1-2 sentence) explanation .
First catalytic nucleophile identification
Cite some reference here, with a short (1-2 sentence) explanation.
First general acid/base residue identification
Cite some reference here, with a short (1-2 sentence) explanation.
First 3-D structure
Cite some reference here, with a short (1-2 sentence) explanation.

References

  1. Sugano Y, Terada I, Arita M, Noma M, and Matsumoto T. (1993). Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol. 1993;59(5):1549-54. DOI:10.1128/aem.59.5.1549-1554.1993 | PubMed ID:8517750 [REF1]
  2. Sugano Y, Matsumoto T, and Noma M. (1994). Sequence analysis of the agaB gene encoding a new beta-agarase from Vibrio sp. strain JT0107. Biochim Biophys Acta. 1994;1218(1):105-8. DOI:10.1016/0167-4781(94)90109-0 | PubMed ID:8193156 [REF2]
  3. Ohta Y, Hatada Y, Ito S, and Horikoshi K. (2005). High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol Appl Biochem. 2005;41(Pt 2):183-91. DOI:10.1042/BA20040083 | PubMed ID:15307821 [REF3]
  4. Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, and Choi IG. (2010). Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type beta-agarase producing neoagarobiose. Appl Microbiol Biotechnol. 2010;86(1):227-34. DOI:10.1007/s00253-009-2256-5 | PubMed ID:19802606 [REF4]

All Medline abstracts: PubMed