CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.
Glycoside Hydrolase Family 50
This page is currently under construction. This means that the Responsible Curator has deemed that the page's content is not quite up to CAZypedia's standards for full public consumption. All information should be considered to be under revision and may be subject to major changes.
- Author:
- Responsible Curator: ^^^Mirjam Czjzek^^^
Glycoside Hydrolase Family GH50 | |
Clan | GH-A |
Mechanism | probably retaining |
Active site residues | inferred from clan GH-A as two Glu |
CAZy DB link | |
https://www.cazy.org/GH50.html |
Substrate specificities
To date, all characterized glycoside hydrolases of family 50 are β-agarases (EC 3.2.1.81) that cleave β-1,4 glycosidic bonds of agarose, releasing neoagaro-biose -tetraose and -hexaose [1, 2, 3, 4]. Three enzymes, Aga50A and Aga50D from Saccharophagus degradans and Aga50B from Vibrio sp. have been reported to be pure exo-β-agarases [5].
Kinetics and Mechanism
Actually, a potential retaining mechanism of this glycoside hydrolase familly can only be inferred from analogy to clan GH-A enzymes https://www.cazy.org/GH50.html. No mechanistic or kintetic analysis demonstrating the stereochemical outcome of the reaction have been reported for this family to date.
Catalytic Residues
Unkown
Three-dimensional structures
Unknown; from analogy to clan GH-A enzymes it can be inferred that the 3D structure will be based on a (β/a)8 barrel fold.
Family Firsts
- Identification of first family member
- The family was created in Cazy based on the work of Sugano et al. [1].
- First stereochemistry determination
- not determined yet.
- First catalytic nucleophile identification
- not determined yet.
- First general acid/base residue identification
- not determined yet.
- First 3-D structure
- not determined yet.
References
- Sugano Y, Terada I, Arita M, Noma M, and Matsumoto T. (1993). Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol. 1993;59(5):1549-54. DOI:10.1128/aem.59.5.1549-1554.1993 |
- Sugano Y, Matsumoto T, and Noma M. (1994). Sequence analysis of the agaB gene encoding a new beta-agarase from Vibrio sp. strain JT0107. Biochim Biophys Acta. 1994;1218(1):105-8. DOI:10.1016/0167-4781(94)90109-0 |
- Ohta Y, Hatada Y, Ito S, and Horikoshi K. (2005). High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol Appl Biochem. 2005;41(Pt 2):183-91. DOI:10.1042/BA20040083 |
- Lee DG, Park GT, Kim NY, Lee EJ, Jang MK, Shin YG, Park GS, Kim TM, Lee JH, Lee JH, Kim SJ, and Lee SH. (2006). Cloning, expression, and characterization of a glycoside hydrolase family 50 beta-agarase from a marine Agarivorans isolate. Biotechnol Lett. 2006;28(23):1925-32. DOI:10.1007/s10529-006-9171-y |
- Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, and Choi IG. (2010). Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type beta-agarase producing neoagarobiose. Appl Microbiol Biotechnol. 2010;86(1):227-34. DOI:10.1007/s00253-009-2256-5 |