CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m
m (added Curator Approved link)
 
(82 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''13 April 2023''' ''The champagne is on ice:'' We are ecstatic to report that we’ve hit 50 [[Curator Approved]] CAZypedia CBM pages!
+
'''1 November 2024:''' ''Is this a world record? Six CAZypedia families in one fell swoop!'' The '''[[CBM47]], [[CBM70]], [[CBM96]], [[CBM105]], [[CBM106]] and [[PL44]]''' ''CAZypedia'' pages are now flipped to [[Curator Approved]] status. What do these diverse families from diverse origins with diverse binding specificities have in common?  Astonishingly, at least one characterized member from each family interacts with a charged glycan! '''[[User:Wenwen Tao|Wenwen Tao]]''' authored the [[CBM47]], [[CBM96]] and [[CBM106]] pages, '''[[User:Menghui Sun|Menghui Sun]]''' authored the [[CBM70]] page, '''[[User:Guanchen Liu|Guanchen Liu]]''' authored the [[CBM105]] page and '''[[User:Jinhang Zhou|Jinhang Zhou]]''' authored the [[PL44]] page. All this under the responsible curatorship of '''[[User:Yaoguang Chang|Yaoguang Chang]]'''. ''Dive into these diverse families on their respective ''CAZypedia'' pages: '''[[CBM47]], [[CBM70]], [[CBM96]], [[CBM105]], [[CBM106]] and [[PL44]]!'''''
 
+
------
The '''[[CBM92]]''' and the '''[[CBM94]]''' page were finished within under 3 hours of one another.  Congratulations to the contributors for both of the pages: new ''CAZypedia'' contibutors '''[[User:Xuanwei Mei|Xuanwei Mei]]''' and '''[[User:Yaoguang Chang|Yaoguang Chang]]''' for the [[CBM92]] page and longtime ''CAZypedia'' contributor '''[[User:Takatsugu Miyazaki|Takatsugu Miyazaki]]''' for the [[CBM94]] page.
+
'''25 October 2024:''' ''Laminariawesome!'' Check out two new marine families of CBMs, '''[[CBM102]]''' and '''[[CBM103]]''', now on ''CAZypedia'' which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms.  Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate. Both pages were [[author]]ed by '''[[User:Marie-Katherin Zuehlke|Marie-Katherin Zühlke]]'''. ''Read up on these environmentally important CBMs on their respective [[CBM102]] and [[CBM103]] pages!''
 
 
Next stop: 100 [[Curator Approved]] ''CAZypedia'' [[Carbohydrate Binding Module Families|CBM pages]] (this may take a little while).  
 
 
----
 
----
'''13 April 2023, 00:20 ''' ''CBM92 is red hot!'' [[CBM92]] is one of the newer families of CBMs and it has a red hot preference for the red algal extracellular matrix polysaccharide carrageenan, a complex sulfated galactan. Author '''[[User:Xuanwei Mei|Xuanwei Mei]]''' describes the novel carrageenan-binding capacities of the biochemically characterized [[CBM92]] which can be found appended to a kappa-carrageenase produced by the marine bacterium ''Wenyingzhuangia aestuarii''.  '''[[User:Yaoguang Chang|Yaoguang Chang]]''' acted as responsible curator on the page.  ''Head on over to the '''[[CBM92]]''' page to learn more about this red hot CBM family!''
+
'''19 July 2024:''' ''Chalk-up one more for the GTs!'' The '''[[Glycosyltransferase Family 47]]''' page joined the small group of [[Curator Approved]] [[Glycosyltransferase Families]] pages in ''CAZypedia'' today. This entry was [[author]]ed by Ph.D. students '''[[User:Daniel Tehrani|Daniel Tehrani]]''' and '''[[User:Charlie Corulli|Charlie Corulli]]''', and [[Responsible Curator|Curated]] by '''[[User:Breeanna Urbanowicz|Breeanna Urbanowicz]]''' with input from '''[https://ccrc.uga.edu/team/kelley-moremen/ Kelley Moremen]'''Widely represented in plants, '''[[GT47]]''' members are anomer-[[inverting]] [[glycosyltransferases]], which are involved in the biosynthesis of several cell wall matrix polysaccharides.  Representatives from mammals are involved in heparin biosynthesis.  Correspondingly, members of [[GH47]] have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides.  ''This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!''
 
----
 
----
'''12 April 2023, 21:50 ''' ''CBM94, one for the books!'' Three of the [[CBM94]] eukaryotic members have recently been characterized (mouse, silkworm and human) and are described in detail on the [[CBM94]] page which has both been authored and responsibly curated by '''[[User:Takatsugu Miyazaki|Takatsugu Miyazaki]]'''. These ''N''-acetylglucosamine-specific [[CBM94]]s are found on the C-termini of ''N''-acetylglucosaminyltransferase IVa, an enzyme involved in ''N''-glycan biosynthesis.  The [[CBM94]] members play important roles in the functionality of their cognate glycosyl transferase catalytic module which is discussed in detail on the '''[[CBM94]]''' CAZypedia page. ''See more on these remarkable eukaryotic CBMs '''[[CBM94|here]]'''!'' 
+
'''9 July 2024:''' ''Yet another new family of beta-1,2-glucan-active enzymes!'' Today, '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 186]]''' page by '''[[User:Sei Motouchi|Sei Motouchi]]'''. '''[[GH186]]''' is a family of anomer-[[inverting]] enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some [[GH186]] members work as classic [[glycoside hydrolases]], others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack.  Also notable, [[GH186]] members appear to use an extended chain of water molecules to relay acceptor deprotonation by the [[general base]] residue, ''i.e.'' a [https://en.wikipedia.org/wiki/Grotthuss_mechanism Grotthuss mechanism]. ''Check out the '''[[GH186]]''' page to learn more about these interesting enzymes, and make sure to see the [[GH189]], [[GH144]], and [[GH162]] pages from this same group.''
----
+
 
'''11 January 2023''' ''CBM44, it's what's in store.'' We begin 2023 right with a [[Curator Approved]] [[CBM44]] page.  '''[[User:Marie-Katherin Zuehlke|Marie-Katherin Zühlke]]''' has authored the page on the characterized bacterial [[CBM44]] shown to interact with polymers containing ß-1,4-linked glucose in their chains. Responsible curator [[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]] is pleased as punch.  ''Check out the '''[[CBM44]]''' CAZypedia page to learn more about this CBM family!''
 
----
 
'''25 November 2021''' ''Something to CRO about!:'' In our latest [[Curator Approved]] page in a while, '''[[User:Maria Cleveland|Maria Cleveland]]''' has written an extensive history of the Copper Radical Oxidases (CROs) that constitute '''[[Auxiliary Activity Family 5]]'''. The archetypal '''[[AA5]]''' CRO is the ''Fusarium graminearum'' galactose oxidase, which was first isolated in the 1950s, provided the first 3-D structure in the 1990s, and has been the subject of numerous mechanistic studies up through the new millennium. '''[[AA5]]''' also contains the glyoxal oxidases, which were discovered in Wisconsin in the late 1980s and form their own subfamily. More recent work by [[User:Maria Cleveland|Maria]], [[User:Yann Mathieu|Yann Mathieu]], and others has shown that a wider range of substrate specificities exists in this family than previously anticipated, while the catalytic flexibility of wild-type and mutant enzymes has spurred numerous biotech applications. ''Slide on over to the '''[[AA5]]''' page, which includes a <u>deep</u> reference list, to learn more about these interesting enzymes!''
 
----
 
'''23 June 2021''' ''A free CAZypedia webinar:'' Check out the presentation on ''CAZypedia'' by [[Board of Curators|Senior Curator]] [[User:Elizabeth Ficko-Blean|Elizabeth Ficko-Blean]], which was part of a webinar on Recent Advances in Carbohydrate-Active Enzymes organized by [[User:Stefan Janecek|Stefan Janecek]].  [[User:Stefan Janecek|Stefan]] also gave a talk on alpha-amylase bioinformatics, and Nicolas Terrapon gave an overview of the [http://www.cazy.org/ CAZy database] in a presentation entitled "Carbohydrate-Active EnZymes Annotation in the High-Throughput Era".  ''More information on the webinar can be found [https://molecules-12.sciforum.net/ here], and you can [https://youtu.be/JyV-zkr8Jw4 watch all three lectures for free on YouTube].''
 
 
----
 
----
'''31 May 2021''' ''Celebrating CAZy:'' The [[B.A. Stone Award for Excellence in Plant Polysaccharide Biochemistry]] was awarded to [http://www.cazy.org/ CAZy] founder [[User:Bernard Henrissat|Bernard Henrissat]] today.  CAZy, ''CAZypedia'', and [[Bruce Stone|Prof. Bruce Stone]] have a [[CAZypedia:History|long, intertwined history]], and today we celebrate [[User:Bernard Henrissat|Bernie's]] insight to create a [https://doi.org/10.1042/BIO03004026 sequence-based classification of the Carbohydrate-Active EnZymes], [https://doi.org/10.1016/0378-1119(89)90339-9 starting with the cellulases].
+
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old-school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.  
 
----
 
----

Latest revision as of 16:03, 21 November 2024

1 November 2024: Is this a world record? Six CAZypedia families in one fell swoop! The CBM47, CBM70, CBM96, CBM105, CBM106 and PL44 CAZypedia pages are now flipped to Curator Approved status. What do these diverse families from diverse origins with diverse binding specificities have in common? Astonishingly, at least one characterized member from each family interacts with a charged glycan! Wenwen Tao authored the CBM47, CBM96 and CBM106 pages, Menghui Sun authored the CBM70 page, Guanchen Liu authored the CBM105 page and Jinhang Zhou authored the PL44 page. All this under the responsible curatorship of Yaoguang Chang. Dive into these diverse families on their respective CAZypedia pages: CBM47, CBM70, CBM96, CBM105, CBM106 and PL44!


25 October 2024: Laminariawesome! Check out two new marine families of CBMs, CBM102 and CBM103, now on CAZypedia which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms. Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate. Both pages were authored by Marie-Katherin Zühlke. Read up on these environmentally important CBMs on their respective CBM102 and CBM103 pages!


19 July 2024: Chalk-up one more for the GTs! The Glycosyltransferase Family 47 page joined the small group of Curator Approved Glycosyltransferase Families pages in CAZypedia today. This entry was authored by Ph.D. students Daniel Tehrani and Charlie Corulli, and Curated by Breeanna Urbanowicz with input from Kelley Moremen. Widely represented in plants, GT47 members are anomer-inverting glycosyltransferases, which are involved in the biosynthesis of several cell wall matrix polysaccharides. Representatives from mammals are involved in heparin biosynthesis. Correspondingly, members of GH47 have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides. This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!


9 July 2024: Yet another new family of beta-1,2-glucan-active enzymes! Today, Masahiro Nakajima Curator Approved the Glycoside Hydrolase Family 186 page by Sei Motouchi. GH186 is a family of anomer-inverting enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some GH186 members work as classic glycoside hydrolases, others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack. Also notable, GH186 members appear to use an extended chain of water molecules to relay acceptor deprotonation by the general base residue, i.e. a Grotthuss mechanism. Check out the GH186 page to learn more about these interesting enzymes, and make sure to see the GH189, GH144, and GH162 pages from this same group.


2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old-school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.