CAZypedia needs your help!
We have many unassigned pages in need of Authors and Responsible Curators. See a page that's out-of-date and just needs a touch-up? - You are also welcome to become a CAZypedian. Here's how.
Scientists at all career stages, including students, are welcome to contribute.
Learn more about CAZypedia's misson here and in this article.
Totally new to the CAZy classification? Read this first.

Difference between revisions of "Template:News"

From CAZypedia
Jump to navigation Jump to search
m (added Curator Approved link)
 
(45 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''4 January 2024:''' ''CBM99, CBM100 and CBM101 in one fell swoop!'' Three new CBM families have been added to the ''CAZypedia'' repertoire. Though the families differ in their glycan targets, they share the interesting function of binding to highly complex sulfated polymers. '''[[User:Yaoguang Chang|Yaoguang Chang]]''' acted as responsible curator on all the pages. '''[[User:Xuanwei Mei|Xuanwei Mei]]''' authored the [[CBM99]] and [[CBM101]] pages and '''[[User:Guanchen Liu|Guanchen Liu]]''' authored the [[CBM100]] page.   
+
'''1 November 2024:''' ''Is this a world record? Six CAZypedia families in one fell swoop!'' The '''[[CBM47]], [[CBM70]], [[CBM96]], [[CBM105]], [[CBM106]] and [[PL44]]''' ''CAZypedia'' pages are now flipped to [[Curator Approved]] status. What do these diverse families from diverse origins with diverse binding specificities have in common?  Astonishingly, at least one characterized member from each family interacts with a charged glycan! '''[[User:Wenwen Tao|Wenwen Tao]]''' authored the [[CBM47]], [[CBM96]] and [[CBM106]] pages, '''[[User:Menghui Sun|Menghui Sun]]''' authored the [[CBM70]] page, '''[[User:Guanchen Liu|Guanchen Liu]]''' authored the [[CBM105]] page and '''[[User:Jinhang Zhou|Jinhang Zhou]]''' authored the [[PL44]] page.  All this under the responsible curatorship of '''[[User:Yaoguang Chang|Yaoguang Chang]]'''. ''Dive into these diverse families on their respective ''CAZypedia'' pages: '''[[CBM47]], [[CBM70]], [[CBM96]], [[CBM105]], [[CBM106]] and [[PL44]]!'''''
 +
------
 +
'''25 October 2024:''' ''Laminariawesome!'' Check out two new marine families of CBMs, '''[[CBM102]]''' and '''[[CBM103]]''', now on ''CAZypedia'' which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms.  Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate.  Both pages were [[author]]ed by '''[[User:Marie-Katherin Zuehlke|Marie-Katherin Zühlke]]'''. ''Read up on these environmentally important CBMs on their respective [[CBM102]] and [[CBM103]] pages!''
 
----
 
----
'''4 January 2024:''' ''More "Fun" from the sea.'' Today, '''[[User:Yaoguang Chang|Yaoguang Chang]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 187]]''' page [[Author]]ed by '''[[User:Jingjing Shen|Jingjing Shen]]'''. The founding member of '''[[GH187]]''' is the alpha-1,3-L-fucanase ("Fun187A") the marine bacterium ''Wenyingzhuangia aestuarii'', which recognizes a specific sulfated motif in sea cucumber fucans.  '''[[GH187]]''' is a small family (<50 members) and there remains much to elucidate regarding catalytic mechanism and enzyme structure. Interest in CAZymes active on marine biomass continues to grow, and we welcome this expansion in ''CAZypedia''. ''Learn more about '''[[GH187|GH187 here!]]'''''
+
'''19 July 2024:''' ''Chalk-up one more for the GTs!'' The '''[[Glycosyltransferase Family 47]]''' page joined the small group of [[Curator Approved]] [[Glycosyltransferase Families]] pages in ''CAZypedia'' today. This entry was [[author]]ed by Ph.D. students '''[[User:Daniel Tehrani|Daniel Tehrani]]''' and '''[[User:Charlie Corulli|Charlie Corulli]]''', and [[Responsible Curator|Curated]] by '''[[User:Breeanna Urbanowicz|Breeanna Urbanowicz]]''' with input from '''[https://ccrc.uga.edu/team/kelley-moremen/ Kelley Moremen]'''. Widely represented in plants, '''[[GT47]]''' members are anomer-[[inverting]] [[glycosyltransferases]], which are involved in the biosynthesis of several cell wall matrix polysaccharides.  Representatives from mammals are involved in heparin biosynthesis.  Correspondingly, members of [[GH47]] have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides.  ''This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!''
 
----
 
----
'''17 December 2023:''' ''Redox-assisted glycoside hydrolysis.'' Just before the turn of the new year, '''[[User:Spencer Williams|Spencer Williams]]''' completed the '''[[Glycoside Hydrolase Family 188]]''' page. '''[[GH188]]''' is the latest representative of a growing number of [[Glycoside hydrolases|Glycoside Hydrolase]] families, including [[GH4]], [[GH109]], [[GH177]], and [[GH179]], which use an [[NAD-dependent hydrolysis|NAD-dependent]] oxidation-elimination-addition-reduction cycle to cleave glycosidic bonds. First established ca. 20 years ago in [[GH4]], [[NAD-dependent hydrolysis|this mechanism]] is therefore distinct from the [[Glycoside_hydrolases#Mechanism|canonical Koshland mechanisms]] of glycoside hydrolysis. Notably, because oxidation occurs at C-3 of the sugar ring, followed by elimination at C-1, these enzymes can cleave both alpha- and beta-glycosides! Recently, [[User:Spencer Williams|Spencer]], [[User:Ethan Goddard-Borger|Ethan Goddard-Borger]], and [[User:Gideon Davies|Gideon Davies]] showed that [[NAD-dependent hydrolysis]] also extends to sulfoquinovoside hydrolysis by bacterial '''[[GH188]]''' members, complementing canonical sulfoquinovosidases in [[GH31]]. ''Read more about these remarkable enzymes '''[[GH188|here!]]'''''
+
'''9 July 2024:''' ''Yet another new family of beta-1,2-glucan-active enzymes!'' Today, '''[[User:Masahiro Nakajima|Masahiro Nakajima]]''' [[Curator Approved]] the '''[[Glycoside Hydrolase Family 186]]''' page by '''[[User:Sei Motouchi|Sei Motouchi]]'''. '''[[GH186]]''' is a family of anomer-[[inverting]] enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some [[GH186]] members work as classic [[glycoside hydrolases]], others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack.  Also notable, [[GH186]] members appear to use an extended chain of water molecules to relay acceptor deprotonation by the [[general base]] residue, ''i.e.'' a [https://en.wikipedia.org/wiki/Grotthuss_mechanism Grotthuss mechanism]. ''Check out the '''[[GH186]]''' page to learn more about these interesting enzymes, and make sure to see the [[GH189]], [[GH144]], and [[GH162]] pages from this same group.''
 +
 
 
----
 
----
'''16 August 2023:''' ''An oldie but a goodie.'' The page for '''[[CBM9]]''', one of the original founding top 10 [[Carbohydrate Binding Module Families]], has been completed by '''[[User:Johan Larsbrink|Johan Larsbrink]]''', who multitasked as both [[Author]] and [[Responsible Curator]]. '''[[CBM9]]''' members are often found in ultra-multimodular, xylan deconstructing, bacterial enzymes, and their cellulose-binding functionality has been exploited as affinity tags in recombinant protein purifications. ''Read more on this historically important [[Carbohydrate-binding modules|CBM]] family '''[[CBM9|here]]'''!''
+
'''2 May 2024:''' ''CBDs I to X... A major milestone!'' '''CBM families 1 to 10 are now complete!''' These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old-school families on their respective ''CAZypedia'' pages: '''[[CBM1]], [[CBM2]], [[CBM3]], [[CBM4]], [[CBM5]], [[CBM6]], [[CBM7]], [[CBM8]], [[CBM9]], and [[CBM10]]'''.
 
----
 
----

Latest revision as of 16:03, 21 November 2024

1 November 2024: Is this a world record? Six CAZypedia families in one fell swoop! The CBM47, CBM70, CBM96, CBM105, CBM106 and PL44 CAZypedia pages are now flipped to Curator Approved status. What do these diverse families from diverse origins with diverse binding specificities have in common? Astonishingly, at least one characterized member from each family interacts with a charged glycan! Wenwen Tao authored the CBM47, CBM96 and CBM106 pages, Menghui Sun authored the CBM70 page, Guanchen Liu authored the CBM105 page and Jinhang Zhou authored the PL44 page. All this under the responsible curatorship of Yaoguang Chang. Dive into these diverse families on their respective CAZypedia pages: CBM47, CBM70, CBM96, CBM105, CBM106 and PL44!


25 October 2024: Laminariawesome! Check out two new marine families of CBMs, CBM102 and CBM103, now on CAZypedia which have an ecological role in bacterial degradation of laminarin during phytoplankton blooms. Some function as surface glycan binding proteins but others have roles in targeting their appended catalytic modules to substrate. Both pages were authored by Marie-Katherin Zühlke. Read up on these environmentally important CBMs on their respective CBM102 and CBM103 pages!


19 July 2024: Chalk-up one more for the GTs! The Glycosyltransferase Family 47 page joined the small group of Curator Approved Glycosyltransferase Families pages in CAZypedia today. This entry was authored by Ph.D. students Daniel Tehrani and Charlie Corulli, and Curated by Breeanna Urbanowicz with input from Kelley Moremen. Widely represented in plants, GT47 members are anomer-inverting glycosyltransferases, which are involved in the biosynthesis of several cell wall matrix polysaccharides. Representatives from mammals are involved in heparin biosynthesis. Correspondingly, members of GH47 have diverse substrate specificities, including the transfer of both anionic and neutral monosaccharides to polysaccharides. This is a great example where two keen Ph.D. students worked with their supervisors to create a valuable page for the scientific community. We encourage others to follow their lead, on your favorite family!


9 July 2024: Yet another new family of beta-1,2-glucan-active enzymes! Today, Masahiro Nakajima Curator Approved the Glycoside Hydrolase Family 186 page by Sei Motouchi. GH186 is a family of anomer-inverting enzymes from bacteria, members of which are specific for beta-1,2-glucans. Intriguingly, although some GH186 members work as classic glycoside hydrolases, others perform transglycosylation by wrapping the sugar chain around in the active-site, to position the 6-OH group of a terminal glucosyl unit for direct attack. Also notable, GH186 members appear to use an extended chain of water molecules to relay acceptor deprotonation by the general base residue, i.e. a Grotthuss mechanism. Check out the GH186 page to learn more about these interesting enzymes, and make sure to see the GH189, GH144, and GH162 pages from this same group.


2 May 2024: CBDs I to X... A major milestone! CBM families 1 to 10 are now complete! These are the old CBD (cellulose-binding domain) families, which used to have roman numerals as part of their nomenclature. A special thank you to all the authors and responsible curators who have contributed to this major milestone. Go have a peek at each of these old-school families on their respective CAZypedia pages: CBM1, CBM2, CBM3, CBM4, CBM5, CBM6, CBM7, CBM8, CBM9, and CBM10.